

ED50/ED100/ED250

Swing Door Operators
Narrow header

Installation Instructions

DL4616-005-06-2023

Table of contents

Table of contents1 General information1.1 General information
2 Product overview
2.1 Maximum door weights and doorinstallation2.2 Single door configuration examples
2.3 Double door configuration examples
2.4 Double egress door configuration examples 7
2.3 DS4500 ED50 surface applied (SA) Low energy (LE) door configurations 8
2.3.1 DS4500 ED50 surface applied (SA)LE hardware
2.4 DS4501 ED100 surface applied (SA)low energy (LE) door configurations
2.4.1 DS4501 ED100 surface applied (SA) LE hardware2.5 DS4501 ED100 surface applied (SA)low energy (LE) double egress doorconfigurations
2.5.1 DS4501 ED100 surface applied (SA) LE double egress hardware 13
2.6 DS4502 ED100 FE surface applied (SA) full energy (FE) door configurations 14
2.6.1 DS4502 ED100 surface applied (SA)
FE hardware
2.7 DS4502 ED100 surface applied (SA) full energy (FE) double egress door configurations 16
2.7.1.1 DS4502 ED100 surface applied (SA) FE double egress hardware 17
2.8 DS4503 ED250 surface applied (SA) full energy (FE) door configurations 18
2.8.1 DS4503 ED250 surface applied (SA) FE hardware 18
2.9 DS4503 ED250 surface applied (SA) FE double egress door configurations 20
2.9.1 DS4503 ED250 surface applied (SA)FE double egress hardware21
2.104×6 narrow header 22
2.11 ED50/ED100/ED250 operators 23
2.12 Screw packs 24
2.13 Axle extensions, ED50/ED100/ED250 24
2.14 Push arm door stop - option 24
2.15 Kit, ED operator labels 25
2.16 Mode and Exit Only switch panel 26
2.17 Optional key switch panels 26
2.18 Hole plug kit 26
2.19 Push arm kits 27
2.20 Pull arm kits 27
2.21 Arm screw kits 27
2.22 Double door ED50/ED100/ED250 operator cables 2768101214
5.1 Recommended tools5.2 Standard tightening torque32
325.3 Drill bits
326 ED50/ED100/ED250 door signage6.1 ED100/ED250 full energy operator33
6.2 ED50/ED100/ED250 low energy operator 3333
6.3 Safety label, automatic swing doors 34
6.4 Safety label, low energy swing doors
6.5 Door signage, full energy single swing doors 35
6.6 Door signage, low energy single swing doors, initiation of door operation 35
6.7 Door signage, full energy double swing doors 36
6.8 Door signage, low energy double swing doors 38
7 Installation templates 39
7.1 Narrow header ($4 \times 6^{\prime \prime}$) - push arm template 39
7.2 Narrow header ($4 \times 6^{\prime \prime}$) - deep push arm installation template 40
7.3 Narrow header (4×6 ") - pull arm template 41
7.4 Narrow header (4×6 ") - deep pull arm template 42
7.5 Center hung pivot door, narrow header (4×6 ' ${ }^{\prime \prime}$), push arm template 43
7.6 Center hung pivot door, narrow header (4×6 "), pull arm template
8 ED50/ED100/ED250 narrow header installation 45
8.1 Installation preparation 45
8.2 Remove mounting plate from ED50/ED100/ED250 operator 46
8.3 Single door header installation 47
8.4 Install Mode switch panel in header 48
8.5 Double door header installation 49
9 ED50/ED100/ED250 operator installation 50
9.1 Single door narrow header mounting plate installation 50
9.2 Double door narrow header mounting plate installation 51
9.3 Customer 115 Vac connection to mounting plate terminal block 52
9.4 Double door header 115 Vac mounting plate connection 52
9.5 Remove protective film strips from ED operator 53
9.6 Install ED100/ED250 operator on mounting plate in header 53
9.7 Double door header ED100/ED250 operator installation 55
9.8 Install ED50 operator on mounting plate in header 56
9.9 Double header ED50 operator installation 57
9.10 Connect cables to ED50/ED100/ED250 operator 58
9.11 Double door header operator legend plate 58
10 Pull arm installation 59
10.1 Pull arm installation 59
10.2 Pull arm assemblies 59
10.3 Deep pull arm hardware 59
10.4 Slide shoe assembly 60
10.5 Install hardware into track 60
10.6 Standard arm 61
10.7 Deep pull arm 61
10.8 Deep pull arm installation 62
10.9 Standard pull arm installation 64
11 Push arm installation 66
11.1 Push arm installation templates 66
11.2 Push arm installation 66
12 ED50/ED100/ED250 Operator spring tension 69
12.1 Set ED50/ED100/ED250 operator spring tension 69
13 ANSI/BHMA standards 70
13.1 A156.10 Power operated pedestrian doors 70
13.2 A156.19 Low energy power operated doors 71
14 Install door signage 72
14.1 Install door signage 72
15 Cover, end caps and spindle caps 72
15.1 Cover end cap and spindle installation 72
16 Maintenance 73
16.1 Safety label, automatic swing doors 73
16.2 Safety label, low energy swing doors 73
16.3 Arm fasteners - torque requirements 74
16.4 ED50 brake maintenance 75
Appendix A-Key switch wiring diagrams 77
A1.1 DX4604-21C Key Switch Panel with RJ45 connector 77
A2.1 DX4604-11C Key Switch Panel 78
Appendix B - Knowing act switch wiring 79
diagrams 79
B1.1 Knowing act switches 79
B1.2 Knowing act switch wiring diagram 79

1 General information

1.1 General information

1.1.1 Installation Instructions.

This manual provides installation instructions for the following ED50/ED100/ED250 narrow header surface applied door configurations.

- Reference Para. 2.2 and 2.3 for illustrations.

Single doors.

1. RH and LH pull.
2. RH and LH push.
3. RH and LH pull as push.

Double doors.

1. Pull
2. Push
3. Pull as push.
4. Double egress.

1.1.2 dormakaba.us website.

Manuals are available for review, download, and printing on the dormakaba.us website.

1.1.3 Dimensions

Unless otherwise specified, all dimensions are given in both inches (") and [mm].

1.1.4 Building codes and standards.

ED50/ED100/ED250 narrow installation: observe applicable national and local building codes.

1.1.5 Symbols used in these instructions.

(1) WARNING

This symbol warns of hazards which could result in personal injury or threat to health.

CAUTION

This symbol warns of a potentially unsafe procedure or situation.

NOTICE

Draws attention to important information presented in this document.

TIPS AND RECOMMENDATIONS
Clarifies instructions or other information presented in this document.

2 Product overview

2.1 Maximum door weights and door installation

Table 2.1.1 ED50 low energy door panel

Exterior and interior applications		
Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48^{\prime \prime}[1219]$	220	$[100]$

Table 2.1.2 ED100 low energy door panel

Exterior applications Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48^{\prime \prime}[1219]$	220	$[100]$
Interior applications		
Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48 "[1219]$	600	$[272]$

Table 2.1.3 ED100 full energy door panel

Exterior and interior applications		
Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48 "[1219]$	220	$[100]$

Table 2.1.4 ED250 low energy door panel

Exterior applications Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48^{\prime \prime}[1219]$	600	$[272]$
Interior applications		
Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48 "[1219]$	800	$[317]$

Table 2.1.5 ED250 full energy door panel

Exterior and interior applications		
Prevailing conditions at opening must be considered		
Maximum door width	Pounds	kg
$48^{\prime \prime}[1219]$	320	$[272]$

2.1.1 Interior building surface installation.

NOTICE

Installation on an interior building surface.
The ED50/ED100/ED250 narrow header must be installed on an interior building surface.
2.1.2 ED50/ED100/ED250 narrow header exterior door installation.

NOTICE

Exterior door use.

To insure proper suitability for exterior door use, the following topics must be addressed in the context of the door application setting.

- For site-specific use factors such as high wind conditions and/or building pressure consult the factory.
- Door width, height, weight, and usage patterns.
- Observable prevailing conditions at the opening under which the operator is expected to perform. In some instances, this may require increased force settings to counteract these conditions.
- Door mounted presence sensors. When attempting to overcome these forces, it is strongly suggested that door mounted presence sensors be employed to enhance pedestrian safety through the opening.

2.2 Single door configuration examples

Fig. 2.2.1 RH pull

Fig. 2.2.2 RH pull as a push

Fig. 2.2.3 RH push

2.3 Double door configuration examples

Fig. 2.3.1 Pull

Fig. 2.3.2 Push

Fig. 2.3.3 Pull as push

2.4 Double egress door configuration examples

Fig. 2.4.1 RH Double egress

2.3 DS4500 ED50 surface applied (SA) Low energy (LE) door configurations

Table 2.3.1 ED50 SA push arm door configurations

Part number	Description	Finish
DS4500-01A	ED50, SA LE Push LH CL	Clear
DS4500-01B	ED50, SA LE Push LH DB	Dk Bronze
DS4500-01E	ED50, SA LE Push LH	Special
DS4500-02A	ED50, SA LE Push RH CL	Clear
DS4500-02B	ED50, SA LE Push RH DB	Dk Bronze
DS4500-02E	ED50, SA LE Push RH	Special
DS4500-03A	ED50, SA LE Push Pair CL	Clear
DS4500-03B	ED50, SA LE Push Pair DB	Dk Bronze
DS4500-03E	ED50, SA LE Push Pair	Special

Table 2.3.2 ED50 SA deep push arm door configurations

Part number	Description	Finish
DS4500-11A	ED50, SA LE Deep Push LH CL	Clear
DS4500-11B	ED50, SA LE Deep Push LH DB	Dk Bronze
DS4500-11E	ED50, SA LE Deep Push LH	Special
DS4500-12A	ED50, SA LE Deep Push RH CL	Clear
DS4500-12B	ED50, SA LE Deep Push RH DB	Dk Bronze
DS4500-12E	ED50, SA LE Deep Push RH	Special
DS4500-13A	ED50, SA LE Deep Push Pair CL	Clear
DS4500-13B	ED50, SA LE Deep Push Pair DB	Dk Bronze
DS4500-13E	ED50, SA LE Deep Push Pair	Special

Table 2.3.3 ED50 SA pull arm door configurations

Part number	Description	Finish
DS4500-21A	ED50, SA LE Pull LH CL	Clear
DS4500-21B	ED50, SA LE Pull LH DB	Dk Bronze
DS4500-21E	ED50, SA LE Pull LH	Special
DS4500-22A	ED50, SA LE Pull RH CL	Clear
DS4500-22B	ED50, SA LE Pull RH DB	Dk Bronze
DS4500-22E	ED50, SA LE Pull RH	Special
DS4500-23A	ED50, SA LE Pull Pair CL	Clear
DS4500-23B	ED50, SA LE Pull Pair DB	Dk Bronze
DS4500-23E	ED50, SA LE Pull Pair	Special

Table 2.3.4 ED5O SA deep pull arm door configurations

Part number	Description	Finish
DS4500-31A	ED50, SA LE Deep Pull LH CL	Clear
DS4500-31B	ED50, SA LE Deep Pull LH DB	Dk Bronze
DS4500-31E	ED50, SA LE Deep Pull LH	Special
DS4500-32A	ED50, SA LE Deep Pull RH CL	Clear
DS4500-32B	ED50, SA LE Deep Pull RH DB	Dk Bronze
DS4500-32E	ED50, SA LE Deep Pull RH	Special
DS4500-33A	ED50, SA LE Deep Pull Pair CL	Clear
DS4500-33B	ED50, SA LE Deep Pull Pair DB	Dk Bronze
DS4500-33E	ED50, SA LE Deep Pull Pair	Special

2.3.1 DS4500 ED50 surface applied (SA) LE hardware

Fig. 2.3.1.1 ED50 SA hardware

Reference Table 2.4.1, next page.

Fig. 2.3.1.1 ED50 SA hardware

Table 2.3.1.1 ED50 SA hardware

	Part number	Description	LH	RH	PR
Item			-x1	-x2	-x3
1	DK3137-010	Kit, ED operator label, LE single	1	1	
2	DK3137-030	Kit, ED operator label, LE pair			1
3	DK4617-010	Screw package,ED operator mounting	1	1	2
4	DK4620-010	Plug package, 4×6 header	1	1	2
5	DK4654-010	Screw package, 4×6 header mounting	1	1	1
6	DK4700-010	Kit, ED50 operator	1	1	2

Reference Para. $\mathbf{2 . 3}$ for door arm configurations					
7.1	DK4709-01_	Kit, Push arm	1	1	2
7.2	DK4709-02_	Kit, Deep push arm	1	1	2
7.3	DK4709-11_	Kit, Pull arm	1	1	2
7.4	DK4709-12	Kit, Deep pull arm	1	1	2
8	DS4615-01x	4×6 header assembly LH	1		
9	DS4615-02x	4×6 header assembly RH		1	
10	DS4615-03x	4×6 header assembly PR			1
11	DX3484-030	ED power connect cable 3400 mm (pair)			1
12	DX3485-030	ED sync cable 2030 mm (pair)			1
13	DX4604-05C	Kit, mode switch RJ45 10 ft FRC	1	1	1
14	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft	1	1	1

2.4 DS4501 ED100 surface applied (SA) low energy (LE) door configurations

Table 2.4.1 ED100 SA LE push arm door configurations

Part number	Description	Finish
DS4501-01A	ED100, SA LE Push LH CL	Clear
DS4501-01B	ED100, SA LE Push LH DB	Dk Bronze
DS4501-01E	ED100, SA LE Push LH	Special
DS4501-02A	ED100, SA LE Push RH CL	Clear
DS4501-02B	ED100, SA LE Push RH DB	Dk Bronze
DS4501-02E	ED100, SA LE Push RH	Special
DS4501-03A	ED100, SA LE Push Pair CL	Clear
DS4501-03B	ED100, SA LE Push Pair DB	Dk Bronze
DS4501-03E	ED100, SA LE Push Pair	Special

Table 2.4.3 ED100 SA LE pull arm door configurations

Part number	Description	Finish
DS4501-21A	ED100, SA LE Pull LH CL	Clear
DS4501-21B	ED100, SA LE Pull LH DB	Dk Bronze
DS4501-21E	ED100, SA LE Pull LH	Special
DS4501-22A	ED100, SA LE Pull RH CL	Clear
DS4501-22B	ED100, SA LE Pull RH DB	Dk Bronze
DS4501-22E	ED100, SA LE Pull RH	Special
DS4501-23A	ED100, SA LE Pull Pair CL	Clear
DS4501-23B	ED100, SA LE Pull Pair DB	Dk Bronze
DS4501-23E	ED100, SA LE Pull Pair	Special

Table 2.4.2 ED100 SA LE deep push arm door configurations

Part number	Description	Finish
DS4501-11A	ED50, SA LE Deep Push LH CL	Clear
DS4501-11B	ED50, SA LE Deep Push LH DB	Dk Bronze
DS4501-11E	ED50, SA LE Deep Push LH	Special
DS4501-12A	ED50, SA LE Deep Push RH CL	Clear
DS4501-12B	ED50, SA LE Deep Push RH DB	Dk Bronze
DS4501-12E	ED50, SA LE Deep Push RH	Special
DS4501-13A	ED50, SA LE Deep Push Pair CL	Clear
DS4501-13B	ED50, SA LE Deep Push Pair DB	Dk Bronze
DS4501-13E	ED50, SA LE Deep Push Pair	Special

Table 2.4.4 ED100 SA LE deep pull arm door configurations

Part number	Description	Finish
DS4501-31A	ED100, SA LE Deep Pull LH CL	Clear
DS4501-31B	ED100, SA LE Deep Pull LH DB	Dk Bronze
DS4501-31E	ED100, SA LE Deep Pull LH	Special
DS4501-32A	ED100, SA LE Deep Pull RH CL	Clear
DS4501-32B	ED100, SA LE Deep Pull RH DB	Dk Bronze
DS4501-32E	ED100, SA LE Deep Pull RH	Special
DS4501-33A	ED100, SA LE Deep Pull Pair CL	Clear
DS4501-33B	ED100, SA LE Deep Pull Pair DB	Dk Bronze
DS4501-33E	ED100, SA LE Deep Pull Pair	Special

2.4.1 DS4501 ED100 surface applied (SA) LE hardware

Fig. 2.4.1.1 ED100 SA LE hardware

Reference Table 2.6.1, next page.

Fig. 2.4.1.1 ED100 SA LE hardware

Table 2.4.1.1 ED100 SA LE hardware

	Part number	Description	LH	RH	PR
Item			-x1	-x2	-x3
1	DK3137-010	Kit, ED operator label, LE single	1	1	
2	DK3137-030	Kit, ED operator label, LE pair			1
3	DK4617-010	Screw package,ED operator mounting	1	1	2
4	DK4620-010	Plug package, 4×6 header	1	1	2
5	DK4702-010	Kit, ED100 operator	1	1	2
6	DK4654-010	Screw package, 4×6 header mounting	1	1	1

Reference Para. 2.4 for door arm configurations

$\mathbf{7 . 1}$	DK4709-01_	Kit, Push arm	1	1	2
$\mathbf{7 . 2}$	DK4709-02_	Kit, Deep push arm	1	1	2
$\mathbf{7 . 3}$	DK4709-11_	Kit, Pull arm	1	1	2
$\mathbf{7 . 4}$	DK4709-12_	Kit, Deep pull arm	1	1	2
$\mathbf{8}$	DS4615-01x	4x6 header assembly LH	1		

9	DS4615-02x	4×6 header assembly RH	1
10	DS4615-03x	4×6 header assembly PR	1
11	DX3484-030	ED power connect cable 3400 mm (pair)	1
12	DX3485-030	ED sync cable 2030 mm (pair)	1

$\mathbf{1 3}$	DX4604-05C	Kit, mode switch RJ45 10 ft FRC	1	1	1
$\mathbf{1 4}$	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft	1	1	1
$\mathbf{1 5}$	DS4633-001	Door stop assembly, $1 / 4$ " Push arm only	1	1	2

2.5 DS4501 ED100 surface applied (SA) low energy (LE) double egress door configurations

Table 2.5.1 ED100 SA LE double egress door configurations

Part number	Description	Finish
DS4501-43A	ED100, SA FE Double Egress CL	Clear
DS4501-43B	ED100, SA FE Double Egress DB	Dk Bronze
DS4501-43E	ED100, SA FE Double Egress	Special

2.5.1 DS4501 ED100 surface applied (SA) LE double egress hardware

Fig. 2.5.1.1 ED100 SA LE double egress hardware

2.6 DS4502 ED100 FE surface applied (SA) full energy (FE) door configurations

Table 2.6.1 ED100 SA FE push arm door configurations

Part number	Description	Finish
DS4501-01A	ED100, SA FE Push LH CL	Clear
DS4501-01B	ED100, SA FE Push LH DB	Dk Bronze
DS4501-01E	ED100, SA FE Push LH	Special
DS4501-02A	ED100, SA FE Push RH CL	Clear
DS4501-02B	ED100, SA FE Push RH DB	Dk Bronze
DS4501-02E	ED100, SA FE Push RH	Special
DS4501-03A	ED100, SA FE Push Pair CL	Clear
DS4501-03B	ED100, SA FE Push Pair DB	Dk Bronze
DS4501-03E	ED100, SA FE Push Pair	Special

Table 2.6.2 ED100 SA FE deep push arm door configurations

Part number	Description	Finish
DS4501-11A	ED100, SA FE Deep Push LH CL	Clear
DS4501-11B	ED100, SA FE Deep Push LH DB	Dk Bronze
DS4501-11E	ED100, SA FE Deep Push LH	Special
DS4501-12A	ED100, SA FE Deep Push RH CL	Clear
DS4501-12B	ED100, SA FE Deep Push RH DB	Dk Bronze
DS4501-12E	ED100, SA FE Deep Push RH	Special
DS4501-13A	ED100, SA FE Deep Push Pair CL	Clear
DS4501-13B	ED100, SA FE Deep Push Pair DB	Dk Bronze
DS4501-13E	ED100, SA FE Deep Push Pair	Special

Table 2.6.3 ED100 SA FE pull arm door configurations

Part number	Description	Finish
DS4501-21A	ED100, SA FE Pull LH CL	Clear
DS4501-21B	ED100, SA FE Pull LH DB	Dk Bronze
DS4501-21E	ED100, SA FE Pull LH	Special
DS4501-22A	ED100, SA FE Pull RH CL	Clear
DS4501-22B	ED100, SA FE Pull RH DB	Dk Bronze
DS4501-22E	ED100, SA FE Pull RH	Special
DS4501-23A	ED100, SA FE Pull Pair CL	Clear
DS4501-23B	ED100, SA FE Pull Pair DB	Dk Bronze
DS4501-23E	ED100, SA FE Pull Pair	Special

Table 2.6.4 ED100 SA FE deep pull arm door configurations

Part number	Description	Finish
DS4501-31A	ED100, SA FE Deep Pull LH CL	Clear
DS4501-31B	ED100, SA FE Deep Pull LH DB	Dk Bronze
DS4501-31E	ED100, SA FE Deep Pull LH	Special
DS4501-32A	ED100, SA FE Deep Pull RH CL	Clear
DS4501-32B	ED100, SA FE Deep Pull RH DB	Dk Bronze
DS4501-32E	ED100, SA FE Deep Pull RH	Special
DS4501-33A	ED100, SA FE Deep Pull Pair CL	Clear
DS4501-33B	ED100, SA FE Deep Pull Pair DB	Dk Bronze
DS4501-33E	ED100, SA FE Deep Pull Pair	Special

2.6.1 DS4502 ED100 surface applied (SA) FE hardware

Fig. 2.6.1.1 ED100 SA FE hardware

Reference Table 2.10.1, next page.

Fig. 2.6.1.1 ED100 SA FE hardware

Table 2.10.1 ED100 SA FE hardware

	Part number	Description	LH	RH	PR
			$-\times 1$	$-\times 2$	$-\times 3$
$\mathbf{1 . 1}$	DK3137-110	Kit, ED operator label, FE single	1	1	
$\mathbf{1 . 2}$	DK3137-130	Kit, ED operator label, FE pair			1
$\mathbf{2}$	DK4617-010	Screw package,ED operator mounting	1	1	2
$\mathbf{3}$	DK4620-010	Plug package, 4x6 header	1	1	2
$\mathbf{4}$	DK4654-010	Screw package, 4x6 header mounting	1	1	1
$\mathbf{5}$	DK4702-010	Kit, ED100 operator	1	1	2

Reference Para. 2.6 for door arm configurations

$\mathbf{7 . 1}$	DK4709-01_	Kit, Push arm	1	1	2
$\mathbf{7 . 2}$	DK4709-02_	Kit, Deep push arm	1	1	2
$\mathbf{7 . 3}$	DK4709-11_	Kit, Pull arm	1	1	2
$\mathbf{7 . 4}$	DK4709-12_	Kit, Deep pull arm	1	1	2
$\mathbf{8}$	DS4615-01×	4×6 header assembly LH	1		

$\mathbf{9}$	DS4615-02x	4x6 header assembly RH	1		
$\mathbf{1 0}$	DS4615-03x	4x6 header assembly PR			1
$\mathbf{1 0}$	DX4604-05C	Kit, mode switch RJ45 10 ft FRC	1	1	1
$\mathbf{1 1}$	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft	1	1	1
$\mathbf{1 2}$	DX3484-030	ED power connect cable 3400 mm (pair)			1
$\mathbf{1 3}$	DX3485-030	ED sync cable 2030 mm (pair)			1
$\mathbf{1 5}$	DS4633-001	Door stop assembly, 1/4" Push arm only	1	1	2

2.7 DS4502 ED100 surface applied (SA) full energy (FE) double egress door configurations

Table 2.7.1 ED100 SA FE double egress door configurations

Part number	Description	Finish
DS4502-43A	ED100, SA FE Double Egress CL	Clear
DS4502-43B	ED100, SA FE Double Egress DB	Dk Bronze
DS4502-43E	ED100, SA FE Double Egress	Special

2.7.1.1 DS4502 ED100 surface applied (SA) FE double egress hardware

Fig. 2.7.1.1 ED100 SA FE double egress hardware

Table 2.7.1.1 ED100 SA FE double egress hardware

Item	Part number	Description
$\mathbf{1}$	DK3137-110	Kit, ED operator label, FE single
$\mathbf{2}$	DK3137-130	Kit, ED operator label, FE pair
$\mathbf{3}$	DK4617-010	Screw package,ED operator mounting
$\mathbf{4}$	DK4620-010	Plug package, 4×6 header
$\mathbf{5}$	DK4654-010	Screw package, 4×6 header mounting
$\mathbf{6}$	DK4702-010	Kit, ED100 operator
$\mathbf{7}$	DK4709-01_	Kit, Push arm
$\mathbf{8}$	DK4709-12_	Kit, Deep pull arm
$\mathbf{9}$	DS4615-03x	4×6 header assembly PR
$\mathbf{1 0}$	DS4633-001	Door stop assembly, 1/4"
$\mathbf{1 1}$	DX3484-030	ED power connect cable 3400 mm (pair)
$\mathbf{1 2}$	DX3485-030	ED sync cable 2030 mm (pair)
$\mathbf{1 3}$	DX4604-05C	Kit, mode switch RJ45 10 ft FRC
$\mathbf{1 4}$	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft

2.8 DS4503 ED250 surface applied (SA) full energy (FE) door configurations

Table 2.8.1 ED250 SA FE push arm door configurations

Part number	Description	Finish
DS4503-01A	ED250, SA FE Push LH CL	Clear
DS4503-01B	ED250, SA FE Push LH DB	Dk Bronze
DS4503-01E	ED250, SA FE Push LH	Special
DS4503-02A	ED250, SA FE Push RH CL	Clear
DS4503-02B	ED250, SA FE Push RH DB	Dk Bronze
DS4503-02E	ED250, SA FE Push RH	Special
DS4503-03A	ED250, SA FE Push Pair CL	Clear
DS4503-03B	ED250, SA FE Push Pair DB	Dk Bronze
DS4504-03E	ED250, SA FE Push Pair	Special

Table 2.8.2 ED250 SA FE deep push arm door configurations

Part number	Description	Finish
DS4503-11A	ED250, SA FE Deep Push LH CL	Clear
DS4503-11B	ED250, SA FE Deep Push LH DB	Dk Bronze
DS4503-11E	ED250, SA FE Deep Push LH	Special
DS4503-12A	ED250, SA FE Deep Push RH CL	Clear
DS4503-12B	ED250, SA FE Deep Push RH DB	Dk Bronze
DS4503-12E	ED250, SA FE Deep Push RH	Special
DS4503-13A	ED250, SA FE Deep Push Pair CL	Clear
DS4503-13B	ED250, SA FE Deep Push Pair DB	Dk Bronze
DS4503-13E	ED250, SA FE Deep Push Pair	Special

Table 2.8.3 ED250 SA FE pull arm door configurations

Part number	Description	Finish
DS4503-21A	ED250, SA FE Pull LH CL	Clear
DS4503-21B	ED250, SA FE Pull LH DB	Dk Bronze
DS4503-21E	ED250, SA FE Pull LH	Special
DS4503-22A	ED250, SA FE Pull RH CL	Clear
DS4503-22B	ED250, SA FE Pull RH DB	Dk Bronze
DS4503-22E	ED250, SA FE Pull RH	Special
DS4503-23A	ED250, SA FE Pull Pair CL	Clear
DS4503-23B	ED250, SA FE Pull Pair DB	Dk Bronze
DS4503-23E	ED250, SA FE Pull Pair	Special

Table 2.8.4 ED250 SA FE deep pull arm door configurations

Part number	Description	Finish
DS4503-31A	ED250, SA FE Deep pull LH CL	Clear
DS4503-31B	ED250, SA FE Deep Pull LH DB	Dk Bronze
DS4503-31E	ED250, SA FE Deep Pull LH	Special
DS4503-32A	ED250, SA FE Deep Pull RH CL	Clear
DS4504-32B	ED250, SA FE Deep Pull RH DB	Dk Bronze
DS4503-32E	ED250, SA FE Deep Pull RH	Special
DS4503-33A	ED250, SA FE Deep Pull Pair CL	Clear
DS4503-33B	ED250, SA FE Deep Pull Pair DB	Dk Bronze
DS4503-33E	ED250, SA FE Deep Pull Pair	Special

2.8.1 DS4503 ED250 surface applied (SA) FE hardware

Fig. 2.8.1.1 ED250 SA FE hardware

Reference Table 2.14.1, next page.

Fig. 2.8.1.1 ED250 FE SA hardware

Table 2.8.1.1 ED250 FE SA hardware

	Part number	Description	LH	RH	PR
Item			-x1	-x2	-x3
1.1	DK3137-110	Kit, ED operator label, FE single	1	1	
1.2	DK3137-130	Kit, ED operator label, FE pair			1
2	DK4617-010	Screw package,ED operator mounting	1	1	2
3	DK4620-010	Plug package, 4×6 header	1	1	2
4	DK4654-010	Screw package, 4×6 header mounting	1	1	1
5	DK4704-010	Kit, ED250 operator	1	1	2

Reference Para. 2.8 for door arm configurations					
6.1	DK4709-01_	Kit, Push arm	1	1	2
6.2	DK4709-02_	Kit, Deep push arm	1	1	2
6.3	DK4709-11_	Kit, Pull arm	1	1	2
6.4	DK4709-12_	Kit, Deep pull arm	1	1	2
7.1	DS4615-01x	4×6 header assembly LH	1		
7.2	DS4615-02x	4×6 header assembly RH		1	
7.3	DS4615-03x	4×6 header assembly PR			1
8	DX3484-030	ED power connect cable 3400 mm (pair)			1
9	DX3485-030	ED sync cable 2030 mm (pair)			1
10	DX4604-05C	Kit, mode switch RJ45 10 ft FRC	1	1	1
11	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft	1	1	1
12	DS4633-001	Door stop assembly, 1/4" Push arm only	1	1	2

2.9 DS4503 ED250 surface applied (SA) FE double egress door configurations

Table 2.9.1 ED250 SA FE double egress door configurations

Part number	Description	Finish
DS4503-43A	ED250, SA FE Double Egress CL	Clear
DS4503-43B	ED250, SA FE Double Egress DB	Dk Bronze
DS4503-43E	ED250, SA FE Double Egress	Special

2.9.1 DS4503 ED250 surface applied (SA) FE double egress hardware

Fig. 2.9.1.1 ED250 FE SA double egress hardware

Table 2.9.1.1 ED100 FE SA hardware

Item	Part number	Description
$\mathbf{1}$	DK3137-110	Kit, ED operator label, FE single
$\mathbf{2}$	DK3137-130	Kit, ED operator label, FE pair
$\mathbf{3}$	DK4617-010	Screw package,ED operator mounting
$\mathbf{4}$	DK4620-010	Plug package, 4×6 header
$\mathbf{5}$	DK4654-010	Screw package, 4x6 header mounting
$\mathbf{6}$	DK4704-010	Kit, ED250 operator
$\mathbf{7}$	DK4709-01_	Kit, Push arm
$\mathbf{8}$	DK4709-12_	Kit, Deep pull arm
$\mathbf{9}$	DS4615-03x	4×6 header assembly PR
$\mathbf{1 0}$	DS4633-001	Door stop assembly, 1/4"
$\mathbf{1 1}$	DX3484-030	ED power connect cable 3400 mm (pair)
$\mathbf{1 2}$	DX3485-030	ED sync cable 2030 mm (pair)
$\mathbf{1 3}$	DX4604-05C	Kit, mode switch RJ45 10 ft FRC
$\mathbf{1 4}$	DX4607-010	Communication cable, 90 Deg, RJ45 3 ft

2.104×6 narrow header

Table 2.10.1 4×6 narrow header configurations

Part number	Description	Finish
DS4615-01A	4×6 header assembly SA LH CL	Clear
DS4615-01B	4×6 header assembly SA LH DB	Dk Bronze
DS4615-01E	4×6 header assembly SA LH	Custom
DS4615-02A	4×6 header assembly SA RH CL	Clear
DS4615-02B	4×6 header assembly SA RH DB	Dk Bronze
DS4615-02E	4×6 header assembly SA RH	Custom
DS4615-01A	4×6 header assembly SA PR CL	Clear
DS4615-01B	4×6 header assembly SA PR DB	Dk Bronze
DS4615-01E	4×6 header assembly SA PR	Custom

Fig. 2.10.1 Narrow header SA RH and LH

Fig. 2.17.3 Narrow header SA pair and exploded view

Table 2.10.2 4×6 narrow header hardware

	Part number	Description	LH	RH	PR
			-01x	-02x	-03x
1.1	DC4600-01x	4×6 header SA LH	1	-	-
1.2	DC4600-02x	4×6 header SA RH	-	1	-
1.3	DC4600-03x	4×6 header SA PR	-	-	1
2.1	DC4610-01x	4×6 cover	1	1	-
2.2	DC4610-03x	4×6 cover, PR	-	-	1
3	DC4605-010	4×6 header track	2	2	4
4	DC4690-01C	End cap, operator header switch	2	2	2
5	DC4692-01C	Cover, blank	1	1	1
6	DF0204-01B	\#5 flat head sheet metal screw, black	2	2	2
7	DF0207-01B	$1 / 4-20 \times 5 / 8^{\prime \prime}$ self tapping screw, black oxide	6	6	7
8	DK4672-001	Kit, ED 4×6 jamb bracket	-	-	1

Fig. 2.10.2 Narrow header SA RH exploded view

2.11 ED50/ED100/ED250 operators

Fig. 2.11.1 ED50 operator

Fig. 2.11.2 ED100/ED250 operator

Fig. 2.11.3 Accessory terminals, guide pin

11 Terminals for accessory wiring
12 Bag containing terminals and third guide pin*
13 Guide pin

* Included with operator

2.12 Screw packs

Fig. 2.12.1 Mounting plate screws
8.1 \#12 $\times 2.5$ RHWSP
8.2 1/4-20 $\times 1.5$ PHSLFP

11 1/4-20×1" FHMSP (flat head machine screw, Phillips)

Fig. 2.12.2 Header mounting screw pack DK4608-010

2.13 Axle extensions, ED50/ED100/ED250

Fig. 2.13.1 [20 mm] 3/4"

$\begin{array}{cc}\text { Fig. 2.13.2 } & {[30 \mathrm{~mm}]} \\ & 11 / 8^{\prime \prime}\end{array}$

extension DC4679-003
490 mm axle
extension
DC4679-004
120 mm axle extension DC4679-001

230 mm axle extension DC4679-002

360 mm axle

Fig. 2.13.4 [90 mm] 3 9/16" ED250

2.14 Push arm door stop - option

Fig. 2.14.1 Door stop assembly DS4633-001
2 1/4" thick base plate DC4633-001
3 Rubber bumper DC4633-003

4 Shoulder screw DC4633-004
5.1 1/4×11/4" Phillips FHS, black oxide, SS
5.2 No. $14 \times 11 / 4^{\prime \prime}$ Phillips FHS for sheet metal, zinc plated steel

Fig. 2.14.2 Mounting screw kit DC4633-005

2.15 Kit, ED operator labels

9 Label, Service call DD3425-010

8 Safety Information label, low energy DD1269-040

4 DD0762-020 Decal, Pull to Operate
3 DD0762-010 Decal, Push to Operate
2 DD0758-010 Decal, Activate Switch to Operate

1 DD0586-010
Decal, Automatic Caution Door

1 DD0756-010 Decal, Automatic Caution Door

10 DD0756-020 Decal, Automatic Door, Up Arrow

9 Decal, Service Call DD3425-010

8 Decal, AAADM Safety DD1269-020
7 Safety Information label, low energy DD1269-040
6 DD0762-020 Decal, Pull to Operate
5 DD0762-010 Decal, Push to Operate

4 DD0758-010 Decal, Activate Switch to Operate

3 DD0739-020 Decal, Do Not Enter
2 DD0739-010 Decal, Do Not Enter, Up Arrow
1 DD0586-010 Decal, Automatic Caution Door

Assembly \#	Item \#	Quantity
DK3137-010 Single door low energy (LE) decal kit	9	1
	8	1
	4	1
	3	1
	2	1
	1	2
Assembly \#	Item \#	Quantity
DK3137-030 Pair door low energy (LE) decal kit	9	1
	8	1
	4	2
	3	2
	2	4
	1	4

Assembly \#	Item \#	Quantity
	9	1
DK3137-110 Single door full energy (FE) decal kit	8	1
	7	1
	4	1
	3	1

Fig. 2.15.1 Kit, ED Operator Label LE, DK3137-OXO

Fig. 2.15.2 Kit, ED Operator Label FE, DK3137-1XO

2.16 Mode and Exit Only switch panel

2.16.1 Mode switch kit.

Mode Switch Kit \#	Description	Mode switch cable length	Item $\#$	
DX4604-04C	Kit, Mode Switch RJ45 3 Ft FRC	3^{\prime}	[914 mm]	1,2
Option	DX4604-05C	Kit, Mode Switch RJ45 10 Ft FRC	10^{\prime}	[3048 mm]
DX4604-06C	Kit, Mode Switch RJ45 20 Ft FRC	20^{\prime}	[6096 mm]	1,2
DX4604-09C	Kit, Mode Switch RJ45 6 Ft FRC	6^{\prime}	[1829 mm]	1,2

2.16.2 RJ45 Communication cable.

Communication cable 90 degree RJ45		Length	Item \#
DX4662-001	3^{\prime}	$[914 \mathrm{~mm}]$	1
DX4662-002	10^{\prime}	$[3048 \mathrm{~mm}]$	1
DX4662-003	20^{\prime}	$[6096 \mathrm{~mm}]$	1

2.17 Optional key switch panels

2 Key switch panel, RJ45, DX4604-21C
3 Key switch panel DX4604-11C

TIPS AND RECOMMENDATIONS

- Wiring diagrams; reference Appendix C.

Fig. 2.16.1 Kit, Mode switch

Fig. 2.16.2 Communication cable, 90 degree RJ45

Fig. 2.17.1 Optional Key switch panels

2.18 Hole plug kit

Fig. 2.18.1 Hole plug kit DK462O-010

12	$11 / 2^{\prime \prime}$ hole plug
$\mathbf{1 3}$	$3 / 8^{\prime \prime}[10 \mathrm{~mm}]$ hole
	plug

2.19 Push arm kits

1 Standard push arm DC4677-01X

2 Deep push arm, DC4677-02X
3 Screw kit,
DK2719-010

Fig. 2.19.1 Push arm kit DK4709-01X

Fig. 2.19.2 Deep push arm kit DK4709-02X

2.20 Pull arm kits

Fig. 2.15.1 Pull arm kit, DK4709-11X

1 Pull arm DC4678-01X

2 Deep pull arm DC4678-02X

3 Screw kit DK2719-020

2.21 Arm screw kits

$9.1 \quad 10-24 \times 11 / 2^{\prime \prime}$ barrel nut DF2718-01Z
$9.210-24 \times 1 / 2^{\prime \prime}$ PPHMS DF3278-01Z
10.1 10-24×11/2" barrel nut DF2718-01Z

Fig. 2.15.2 Deep pull arm kit, DK4709-12X

Fig. 2.21.2 Pull arm screw kit DK2719-020

10.2 10-24×11/4"

FHSCS DF2717-01Z

2.22 Double door ED50/ED100/ED250 operator cables

Sync cable	Length		Item \#	Quantity
DX3485-030	$80^{\prime \prime}$	$[2030 \mathrm{~mm}]$	1	1
Optional				
DX3485-010	$97 / 8^{\prime \prime}$	$[250 \mathrm{~mm}]$	1	0
DX3485-020	$401 / 2^{\prime \prime}$	$[1030 \mathrm{~mm}]$	1	0

Power connect cable	Length		Item \#	Quantity
DX3484-030	$1195 / 8^{\prime \prime}$	$[3400 \mathrm{~mm}]$	3	1
Optional				
DX3484-010	$687 / 8^{\prime \prime}$	$[1750 \mathrm{~mm}]$	3	0
DX3484-020	$941 / 2^{\prime \prime}$	$[2400 \mathrm{~mm}]$	3	0

Fig. 2.22.1 Sync cable

Fig. 2.22.2 Power connect cable

3 Technical data

3.1 ED50/ED100/ED250 operator technical data

3.1.1 Operating conditions.

Ambient temperature	5 to $122^{\circ} \mathrm{F} \quad\left[-15\right.$ to $\left.50^{\circ} \mathrm{C}\right]$		
Suitable for dry rooms only	Relative air humidity: 93% maximum, non-condensing		
Power supply	$115 \mathrm{Vac} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ 6.6 A maximum		
Branch circuit protection (provided by others)	15 A maximum, dedicated branch circuit		
Protection class	NEMA \quad [IP20]		Power wiring: black, white, bare copper (ground)
:---			
Operating noise maximum			

3.1.2 General specifications.

Operator dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	$27^{\prime \prime} \times 23 / 4 \times 51 / 8 "[685 \times 70 \times 130 \mathrm{~mm}]$ 27 cover standard
Operator weight	$21.8 \mathrm{lb}[9.9 \mathrm{~kg}]$
ED100/ED250 power supply for accessories	$24 \mathrm{Vdc} \pm 5 \%, 1.5 \mathrm{~A}$
ED50 power supply for accessories	$24 \mathrm{Vdc} \pm 5 \%, 1.5 \mathrm{~A}$ external power supply must be supplied.
Maximum door opening angle	95 to 110° depending on installation type

3.1.5 Integrated functions

Hold open time Automatic opening	dd parameter	0 to 30 s Optional 0-180 s.
Hold open time Nlght / bank	dn parameter	0 to 30 s
Hold open time Manual opening	do parameter	0 to 30 s
Door blocking behavior	hd parameter	Automatic, manual door modes
Electric strike delayed opening for locking mechanism	Ud parameter	0 to 4 s
Locking X3 device 43,3 feedback	Chapter 4	Motor lock
Wind load control, maximum	Fo, Fc parameters	$\begin{aligned} & 33.7 \mathrm{lb} \mathrm{f} \\ & 150 \mathrm{~N} \end{aligned}$
Voltage independent braking circuit	Reference:	Adjustable with potentiometer
LED status indicators Green, Red, Yellow	Troubleshooting Instructions	24 Vdc power Error codes Service interval

3.1.3 Inputs

Wire size Connector plug screw size	14 AWG $1 / 16^{\prime \prime}$		
Activation inputs	X4*	Interior, exterior	N. O. contact
Safety sensors	X5	Swing, approach sides.	
Night-bank (intercom system)	X10 57, $57 a$	8-24 Vdc/Vac $+5 \%$	
Night-bank (key switch)	X1 35, 3	$\mathbf{d 2}$ parameter	Configure for N.O. or N.C. contact
Deactivation of drive function	X6 4, 4a	$\mathbf{d 1}$ parameter	Configure for N.O. or N.C. contact

3.1.4 Outputs

| Maximum wire size
 Connector plug
 screw size | 16 AWG
 $1 / 16^{\prime \prime}$ | |
| :--- | :--- | :--- | :--- |
| | Sr parameter | Com, N.O., N.C. |
| Door $\quad \mathbf{X 7}$ | Door closed
 Door open
 Door closed, locked | contacts |

Mode and Exit Only switches		Auto, Close, Open Exit only; Off, On
User interface Reference: Setup and Troubleshooting Instructions Slot for upgrade cards 4 button keypad, 2 digit display Firmware update Extension of functional range. TMP, temperature management program Overload protection		
IDC, initial drive control	Driving phase optimization	
Cycle counter	CC parameter	O to 1,000,000
Power assist function	hA, hF, hs parameters	Drive support for manual opening of door
Push \& go function	PG parameter	Auto opening of door at 40 open

3.2 ED50 operating specifications

3.2.1 ED50		
Maximum power consumption	120 watt	Minimum
Opening force N (lbf) Fo parameter	Maximum $60(13.5 .5)$	
Manual closing force N (lbf) Fc parameter	Minimum $20(4.5)$	Maximum $60(13.5)$
Maximum door weight lb [kg]	$220[100 \mathrm{~kg})$	Depending on door width and application.
Door width	$28 "$	

Maximum opening speed, $\%$	27
Maximum closing speed, $\%$	27
May be limited by door weight after learning cycle.	
Axle extensions, $[m m]$ inches	$[20] 13 / 16^{\prime \prime}$ $[30] 13 / 16^{\prime \prime}$ $[60] 23 / 8^{\prime \prime}$
Reveal depth for pull arm	$13 / 16^{\prime \prime}$
Reveal depth for pull arm with CPD lever	$21 / 4^{\prime \prime}$
Reveal depth for standard push arm	0 to 8 3/4"
Reveal depth for deep push arm	$8 "$ minimum to $1113 / 16^{\prime \prime}$

3.3 ED100/ED250 operating specifications

3.3.1 ED100	
Maximum power input	120 watt
Closing torque	
Maximum door weight	Reference Chapter 2, Maximum door weights
Door width	28" - 48" [700-1219 mm]
Opening speed 0-90	$4^{*}-12$ seconds
Closing speed $90-0^{\circ}$	5* -21 seconds
Axle extensions	20/30/60 mm
Reveal depth, deep pull arm	$\begin{aligned} & \pm 11 / 16^{\prime \prime} \\ & {[\pm 30 \mathrm{~mm}(-60 \mathrm{~mm})]} \end{aligned}$
Reveal depth, push arm	$\begin{aligned} & 0-1911 / 16 " \\ & {[0-500 \mathrm{~mm}]} \end{aligned}$

*Depending on door panel weight, automatically limited with low energy power operator doors (ANSI A156.19).
Maximum speeds will only be reached in full energy operating mode, low door panel weight, and a minimum learned opening angle of 95°.

3.3.2 ED250	240 watt
Maximum power input	Reference Chapter 2, Maximum door weights
Closing torque	$28^{\prime \prime}-63^{\prime \prime}[700-1600 \mathrm{~mm}]$
Maximum door weight.	$28^{\prime \prime}-55^{\prime \prime}[700-1400 \mathrm{~mm}]$
Door width	$3^{\star}-12$ seconds
Door width fire protection	$4^{\star}-21$ seconds
Opening speed 0-900	$20 / 30 / 60 / 90 \mathrm{~mm}$
Closing speed 90-00	$\pm 11 / 16^{\prime \prime}$ $[\pm 30 \mathrm{~mm} \mathrm{(-60} \mathrm{~mm})]$
Axle extensions	$0-1911 / 16^{\prime \prime}$ $[0-500 \mathrm{~mm}]$
Reveal depth, deep pull arm	
Reveal depth, push arm	

3.4 ED100/ED250 torque overview

Mounting on hinge side,
pull version of slide channel.

Mounting on opposite hinge side, push version of standard arm/ push version of slide channel

3.3.1 ED100	Minimum	Maximum		Minimum	Maximum	
Closer size in accordance with EN1154	EN 2	EN 4		EN 2	EN 4	
Manual closing torque: $\mathrm{ft} \mathrm{lb} \mathrm{[Nm]***}$	9.6 [13]	27.3 [37]		9.6 [13]	27.3 [37]	
Automatic closing force lb f [N$]^{* *}$	4.5 [20]	FE 34 [150]	LE 15 [67]	4.5 [20]	FE 34 [150]	LE 15 [67]
Manual opening torque: $\mathrm{ft} \mathrm{lb} \mathrm{[Nm]}$	22 [30]	37 [50]		26 [35]	40.6 [55]	
Automatic opening force lb f [N]**	4.5 [20]	FE 34 [150]	LE 15 [67]	4.5 [20]	FE 34 [150]	LE 15 [67]
Opening force of manually activated power-assist function lb f [N]*	5.2 [23]	5.2 [23]		5.2 [23]	5.2 [23]	

3.3.2 ED250	Minimum	Maximum		Minimum	Maximum	
Closer size in accordance with EN1154	EN 4	EN 6		EN 4	EN 6	
Manual closing torque: ft lb [Nm$]^{* * *}$	19 [26]	48 [65]		19 [26]	66 [90]	
Automatic closing force lb f [N]**	4.5 [20]	FE 34 [150]	LE 15 [67]	4.5 [20]	FE 34 [150]	LE 15 [67]
Manual opening torque: ft lb [Nm]	40.6 [55]	63 [85]		44 [60]	66 [90]	
Automatic opening force lb f [N]**	4.5 [20]	FE 34 [150]	LE 15 [67]	4.5 [20]	FE 34 [150]	LE 15 [67]
Opening force of manually activated power-assist function lb f [N]*	5.2 [23]	5.2 [23]		5.2 [23]	5.2 [23]	

FE - Configured for full energy
LE - Low energy basic device, or configured for low energy
*If power assist support set to maximum, effective from an opening width of approximately 3°.
** The torque is available in the event of an automatic opening in automatic mode.
*** In the push version of the slide channel installation type, the forces reduce by approximately 33%.

4 ED50/E100/ED250 terminal board interfaces

4.1 ED50/ED100/ED250 terminal board interfaces

Fig. 4.1.1 Terminal board electrical connections

1 Green LED
2 Yellow LED
3 Red LED
4 Key (red insert) location in socket. Assigned plug has tab in same location broken off.

5 Jumpers, factory installed at following terminals:

- 4 and 4a
- 15 and 3^{\star}
- 11 and 3^{\star}

6 DCW upgrade card plug
7 Fire protection upgrade card plug.

5 Recommended tools and torque chart

5.1 Recommended tools

Fig. 5.1.1 Recommended tools
1 T-handle hex key, 5 mm
2 Hex keys, 2.5 mm , $3 \mathrm{~mm}, 6 \mathrm{~mm}$
3 Screwdriver, flat
blade
4 Door pressure gauge, O to 35 ft - lbf
5 Screwdriver, Phillips, \#2, \#3
6 Torque wrench, 3 to 50 ft lb min.
6.1 Metric hex key sockets
7 Open end wrench, 13 mm
8 Screwdriver, flat
blade, M2
(1/16 to 3/32")

5.2 Standard tightening torque

5.2.1 Standard tightening torque

Fastener size	ft lb
M5	3.7
M6	7
M8	17
M10	34
M12	58

5.3 Drill bits

5.3.1 Drill bit sizes for fasteners

Fastener	Drill bit size	
\#10 wood screw	Hardwood $9 / 64^{\prime \prime}$	Softwood $1 / 8^{\prime \prime}$
\#12 wood screw	Hardwood $5 / 32 "$	Softwood $9 / 64^{\prime \prime}$
\#14 wood screw	Hardwood $11 / 64^{\prime \prime}$	Softwood $5 / 32^{\prime \prime}$
$1 / 4$-20 metal self tapping screw	$7 / 32 "$	
$10-24$ barrel nut	$5 / 32 "$	

Fig. 5.3.1 Drill bit

6 ED50/ED100/ED250 door signage

6.1 ED100/ED250 full energy operator

6.1.1 Overview

Signage and warnings are specified in ANSI /BHMA A156.10, American National Standard for Power Operated Pedestrian Doors, paragraph 11.

6.1.2 Door, one way traffic, Fig. 6.1.1.

1. Arrow and AUTOMATIC DOOR, one side of decal.

- Shall be visible from approach side of a swinging door, mounted on door at a height of 50" ± 12 " from floor to centerline of sign.

2. DO NOT ENTER and AUTOMATIC DOOR, one side of decal (or separate decal for solid doors - DD0739-020).

- Shall be visible from non-approach side of door that swings towards pedestrians attempting to travel in wrong direction.
6.1.3 Door, double egress, Fig. 6.1.2.

1. Arrow and AUTOMATIC DOOR, one side of decal.

- Shall be visible from approach side of a swinging door, mounted on door at a height of 50 " ± 12 " from floor to centerline of sign.

2. CAUTION AUTOMATIC DOOR, one side of decal.

- Swinging doors serving both egress and ingress shall have a "CAUTION AUTOMATIC DOOR" sign visible from swing side of door.
- Sign shall be mounted on door at a height of $50 \pm 12^{\prime \prime}$ from floor to centerline of sign.

Fig. 6.1.1 One decal, approach side, non-approach side

Fig. 6.1.2 One decal, double egress

Fig. 6.1.3 ACTIVATE SWITCH TO OPERATE decal

```
ACTIVATE SWITCH
TO OPERATE
```

DD0758-010

6.1.4 Knowing act door.

1. ACTIVATE SWITCH TO OPERATE decal.

- Knowing act doors shall have signage stating "ACTIVATE SWITCH TO OPERATE" on side of door having knowing act switch or other knowing act device.

6.2 ED50/ED100/ED250 low energy operator

6.2.1 Overview

Signage and warnings are specified in ANSI /BHMA A156.19, American National Standard for Power Assist and Low Energy Power Operated Doors.

6.2.2 All low energy doors.

1. AUTOMATIC CAUTION DOOR decal.

- All low energy doors shall be marked with signage visible from both side of door with the words "AUTOMATIC CAUTION DOOR".
- Signs shall be mounted 50" ± 12 " from floor to centerline of sign.
6.2.3 Knowing act switch used to initiate door operation.

1. ACTIVATE SWITCH TO OPERATE decal.

- When a knowing act device is used to initiate operation of door operator, door shall be provided with sign on each side of door where switch is operated with message "ACTIVATE SWITCH TO OPERATE".

6.2.4 Push/Pull used to initiate door operation.

1. PUSH TO OPERATE, PULL TO OPERATE decals.

- When push/pull is used to initiate operation of door operator, doors shall be provided with the message "PUSH TO OPERATE" on push side of door and "PULL TO OPERATE" on pull side of door.

Fig. 6.2.1 AUTOMATIC CAUTION DOOR decal

AUTOMATIC

CAUTION
DOOR
DD0586-010

Fig. 6.2.2 ACTIVATE SWITCH TO OPERATE decal

1 Activate Switch to
Operate DD0758-010
Fig. 6.2.3 PUSH TO OPERATE, PULL TO OPERATE decals

PUSH TO OPERATE

2
DD0762-010

3 Pull to Operate DD0762-020

2 Push to Operate DD0762-010

6.3 Safety label, automatic swing doors

6.3.1 Automatic swinging door safety information label.

This AAADM label outlines safety checks that should be performed daily on automatic swinging door controlled by an ED100 or ED250 operator configured for full energy mode.

6.3.2 Safety information label location.

Place label in a protected, visible location on door frame, near program switch panel if possible.

6.3.3 Annual compliance section of label.

This section of label is only completed on automatic swing doors that comply with ANSI/BHMA A156.10 standard and pass inspection by an AAADM certified dormakaba USA, Inc. technician.

6.3.4 Additional annual compliance inspection labels.

Place additional labels over annual compliance inspection section of safety information label.

6.4 Safety label, low energy swing doors

6.4.1 Low energy swinging door safety information label.

This AAADM label outlines safety checks that should be performed daily on low energy swinging door controlled by an ED50 operator or an ED100/ED250 operator configured for the low energy mode.

6.4.2 Safety information label location.

Place label in a protected, visible location on door frame, near program switch panel if possible.

6.4.3 Annual compliance section of label.

This section of label is only completed on low energy swing doors that comply with ANSI/BHMA A156.19 standard and pass inspection by an AAADM certified dormakaba USA, Inc. technician.

6.4.4 Additional annual compliance inspection labels.

Place additional labels over annual compliance inspection section of safety information label.

Fig. 6.3.2 Annual compliance inspection labels

ANNUAL COMPLIANCE INSPECTION

INSPECT FOR AND COMPLIES WITH ANSI A156.19 ON: DATE:
by AAADM Certified Inspector
Number:

Fig. 6.3.1 Safety information labels

SAFETY INFORMATION Automatic Swinging Doors

These minimum safety checks, in addition to those in the Owner's Manual, should be made each day and after any loss of electrical power.

1. Walk toward the door at a normal pace. The door should open when you are about 4 feet from the door.
2. Stand motionless on threshold for at least 10 seconds. The door should not close.
3. Move clear of the area. The door should remain open for at least 1.5 seconds and should close slowly and smoothly.
4. Repeat steps 1 through 3 from other direction if door is used for two way traffic.
5. Inspect the floor area. It should be clean with no loose parts that might cause user to trip or fall. Keep traffic path clear.
6. Inspect door's overall condition. The appropriate signage should be present.
7. Have door inspected by an AAADM certified inspector at least annually.
DO NOT USE DOOR if it fails any of these safety checks of if it malfunctions in any way. Call a qualified automatic door service company to have door repaired or serviced.

See Owner's manual or instructions for details on each of these and other safety items. If you need a copy of the manual, contact the manufacturer.

AAADM

American Association of Automatic Door Manufacturers

ANNUAL COMPLIANCE INSPECTION
INSPECT FOR AND COMPLIES WITH ANSI A156.10 ON:
DATE:
by AAADM Certified Inspector
Number:

SAFETY INFORMATION
 Low Energy Swinging Doors

These minimum safety checks, in addition to those in the Owner's Manual, should be made each day and after any loss of electrical power.

1. Activate the door. Door should open at a slow smooth pace (4 or more seconds), and stop without impact.
2. Door must remain fully open for a minimum of 5 seconds before beginning to close.
3. Door should close at a slow, smooth pace (4 or more seconds), and stop without impact.
4. Inspect the floor area. It should be clean with no loose parts that might cause user to trip or fall. Keep traffic path clear.
5. Inspect door's overall condition. The appropriate signage should be present and the hardware should be in good condition.
6. Have door inspected by an AAADM certified inspector at least annually.
DO NOT USE DOOR if it fails any of these safety checks of if it malfunctions in any way. Call a qualified automatic door service company to have door repaired or serviced.

See Owner's manual or instructions for details on each of these and other safety items. If you need a copy of the manual, contact the manufacturer.

AAADM-3044 AAADM
American Association of Automatic Door Manufacturers

ANNUAL COMPLIANCE INSPECTION

INSPECT FOR AND
COMPLIES WITH ANSI A156.19 ON:
DATE:
by AAADM Certified Inspector
Number:

6.5 Door signage, full energy single swing doors

Fig. 6.5.1 One decal, one way traffic

Fig. 6.5.2 One decal, two way traffic

Non-swing side

6.6 Door signage, low energy single swing doors, initiation of door operation

Fig. 6.6.2 Push/Pull
Push To Operate Pull To Operate

6.7 Door signage, full energy double swing doors

Fig. 6.7.1 One way traffic, approach side

Fig. 6.7.3 Two way traffic, non-swing side

Fig. 6.7.5 One way traffic, knowing act, approach side

Fig. 6.7.2 One way traffic, non-approach side

Fig. 6.7.4 Two way traffic, swing side

Fig. 6.7.6 One way traffic, knowing act, non-approach side

Fig. 6.7.7 Double egress, RH, one way traffic, interior Swing side

Approach side

Fig. 6.7.9 Double egress, LH, two way traffic, interior Swing side

Approach side

Fig. 6.7.8 Double egress, RH, one way traffic, exterior Swing side

Approach side

Fig. 6.7.10 Double egress, LH, two way traffic, exterior Swing side

Approach side

6.8 Door signage, low energy double swing doors

Fig. 6.8.1 Knowing act, SA header side

Fig. 6.8.3 Push/Pull, push to operate

Fig. 6.8.2 Knowing act, hinge side

Fig. 6.8.4 Push/Pull, pull to operate

7 Installation templates

7.1 Narrow header ($4 \times 6^{\prime \prime}$) - push arm template

Fig. 7.1.1 Standard push arm template

7.1.1 Axle distance " A "

Bottom of header to bottom edge of door frame.

Axle extension	ED50/ED100	ED250	A
Arm	\bullet	\bullet	0
20 mm	\bullet	\bullet	$1 / 8^{\prime \prime}$
30 mm	\bullet	\bullet	$1 / 2^{\prime \prime}$
60 mm	\bullet	\bullet	$15 / 8^{\prime \prime}$
90 mm		\bullet	$27 / 8^{\prime \prime}$

7.2 Narrow header (4×6") - deep push arm installation template

Fig. 7.2.1 Deep push arm template

7.2.1 Axle distance " A "

Bottom of header to bottom edge of door frame.

Axle extension	ED50/ED100	ED250	A
Arm	\bullet	\bullet	0
20 mm	\bullet	\bullet	$1 / 8^{\prime \prime}$
30 mm	\bullet	\bullet	$1 / 2^{\prime \prime}$
60 mm	\bullet	\bullet	$15 / 8^{\prime \prime}$
90 mm		\bullet	$27 / 8^{\prime \prime}$

7.3 Narrow header (4×6 ") - pull arm template

Fig. 7.3.1 Pull arm template

7.3.1 Axle distance " A "

Bottom of header to bottom edge of door frame.

Axle extension	ED50/ED100	ED250	A
Arm	\bullet	\bullet	$7 / 16^{\prime \prime}$
20 mm	\bullet	\bullet	$11 / 4^{\prime \prime}$
30 mm	\bullet	\bullet	$15 / 8^{\prime \prime}$
60 mm	\bullet	\bullet	$27 / 8^{\prime \prime}$
90 mm	--	\bullet	$4^{\prime \prime}$

7.4 Narrow header ($4 \times 6^{\prime \prime}$) - deep pull arm template

Fig. 7.4.1 Deep pull arm template

7.4.1 Axle distance " A "

Bottom of header to bottom edge of door frame.

Axle extension	ED50/ED100	ED250	A
Arm	\bullet	\bullet	$7 / 8^{\prime \prime}$
20 mm	\bullet	\bullet	$15 / 8^{\prime \prime}$
30 mm	\bullet	\bullet	$2^{\prime \prime}$
60 mm	\bullet	\bullet	$31 / 4^{\prime \prime}$
90 mm	--	\bullet	$43 / 8^{\prime \prime}$

7.5 Center hung pivot door, narrow header (4×6 "), push arm template

NOTICE

ANSI/BHMA 156.10 Standard for Power Operator Pedestrian Doors Finger guard requirement: Para. 10.2.10.

The opening at hinge side of center pivoted swinging doors shall be:
a) Less than $1 / 4^{"}$ wide with the door in any position, or
b) At least $3 / 4^{\prime \prime}$ wide with the door in any position.

A door that does not comply with the above is acceptable if provided with a finger guard.

Fig. 7.5.1 Center hung pivot door, push arm template

7.6 Center hung pivot door, narrow header (4×6 "), pull arm template

NOTICE

ANSI/BHMA 156.10 Standard for Power Operator Pedestrian Doors -

 Finger guard requirement: Para. 10.2.10.The opening at hinge side of center pivoted swinging doors shall be:
a) Less than $1 / 4^{"}$ wide with the door in any position, or
b) At least $3 / 4$ " wide with the door in any position.

A door that does not comply with the above is acceptable if provided with a finger guard.

Fig. 7.61 Center hung pivot door, pull arm template

7.6.1 Axle distance " A "

Bottom of header to bottom edge of door frame.

Axle extension	ED50/ED100	ED250	A
Arm	\bullet	\bullet	$1 / 4^{\prime \prime}$
20 mm	\bullet	\bullet	$1^{\prime \prime}$
30 mm	\bullet	\bullet	$11 / 2^{\prime \prime}$
60 mm	\bullet	\bullet	$25 / 8^{\prime \prime}$
90 mm	--	\bullet	$37 / 8^{\prime \prime}$

8 ED50/ED100/ED250 narrow header installation

8.1 Installation preparation

NOTICE

Installation steps listed in Chapter 8 through 11 are a recommendation. Structural, local conditions, available tools, or other factors or circumstances may require modification to these steps.

(1) WARNING

ED50/ED100/ED250 narrow header system should be installed by trained and knowledgeable installers experienced in installation and commissioning of swing door operators.
The installer should be familiar with all applicable local and national building code requirements, and with requirements of current ANSI/BHMA standards:

- A156.10, Power Operated Pedestrian Doors.
- A156.19, Power Assist and Low Energy Power Operated Doors.

8.1.1 Door frame and door.

CAUTION

Insure area around door frame, adjacent walls and door is readily accessible and free of objects and debris.

8.1.2 Activation and knowing act devices.

1. Verify Activation and knowing act devices planned
for or in place for the door.

$$
\begin{aligned}
& \text { I TIPS AND RECOMMENDATIONS } \\
& \text { Device wiring should be planned for prior to } \\
& \text { narrow header installation. }
\end{aligned}
$$

8.2 Remove mounting plate from ED50/ED100/ED250 operator

Fig. 8.2.1 115 Vac plug remova

$5 \quad 115 \mathrm{Vac}$ plug
6115 Vac socket

8.2.1 Remove 115 Vac plug from receptacle.

1. Remove 115 Vac plug (5) from its receptacle (6).

8.2.2 Remove mounting plate from operator.

1. Loosen all eight captive M6 socket head cap screws (SHCS) using a 5 mm hex T-handle.

TIPS AND RECOMMENDATIONS
Insure all eight fasteners are free of the mounting plate.
2. Remove operator from mounting plate.
i TIPS AND RECOMMENDATIONS
Guide pin resistance may require screwdriver to start operator removal from end of mounting plate (Fig. 8.2.4).

Fig. 8.2.2 ED50 operator mounting plate removed

Fig. 8.2.3 ED100/ED250 operator mounting plate removed

1 ED100/ED250 operator
2 Mounting plate
5115 Vac plug
$3 \mathrm{M} 6 \times 20 \mathrm{SHCS}$
4 M6 X 10 SHCS
5 Guide pin
6115 Vac plug

Fig. 8.2.4 Mounting plate removal
5
Guide pin

Fig. 8.2.5 5 mm T-handle hexkey

8.3 Single door header installation

8.3.1 Single door header installation preparation.

1. Door frame installed.
2. Confirm header width.

- Header width equals door frame width plus three inches.

3. Confirm handing of door with header.
4. Determine type of door frame or header mounting surface.
5. Determine type and location of studs, or wall material, above door frame.
6. Mark stud locations on wall above door frame.
7. Select header mounting screws (Para. 2.4).

Fig. 8.3.1 Door frame width

Fig. 8.3.2 Header width

Fig. 8.3.3 Single door header mounting holes, conduit holes

1 Bottom mounting hole
2 Top V-groove
3 Bottom V-groove in header center channel

4 Header track
5 Bottom slide channel
6 Top mounting hole,
locate on stud
centerline (locations shown are for
illustration only)
7 Low voltage wiring
8115 VAC wiring
9 Operator axle centerline

8.3.2 Drill holes in header.

1. Drill four $1 / 4^{\prime \prime}$ holes in header bottom slide channel, two on header axle side and two on header door strike side.
2. Drill two holes in header on door strike side for 115 Vac and low voltage wiring.

1 TIPS AND RECOMMENDATIONS

If 115 Vac wiring is located on door swing side, drill hole for wiring on header axle side.

8.3.3 Install Mode switch panel.

1. Install Modeswitch panel in header (Para. 8.4).

8.3.4 Mount header to door frame.

1. Using applicable installation template for reference, locate header on door frame.
2. Drill holes into door frame using header bottom slide channel 1/4" hole locations.
3. Fasten header to wall.

- Use shims as required to make header square to door frame.

CAUTION

Header must be square to door frame!
4. Drill $1 / 4$ " holes in header top V-groove on centerline of marked stud locations and secure header to wall with selected screw.

CAUTION

After drilling holes, clean all metal debris from header!

Fig. 8.3.4 Header located on door frame

1 Screws in bottom slide channel

2 Screws in top V-groove (located on stud centerlines)

3 Program switch panel (may be in different location)
4 Low voltage wiring

$5 \quad 115$ VAC wiring (may be in different location)

8.4 Install Mode switch panel in header

Fig. 8.4.1 Mode switch panel installed in header

Fig. 8.4.2 Mode switch panel

8.4.1 Fasten Mode switch panel to header door strike side.

1. Fasten Mode switch panel to header using two $1 / 8-32 \times 1 / 4$ FHMS supplied with Mode switch panel assembly.

TIPS AND RECOMMENDATIONS

Lack of adequate space between side of header and door frame may require Mode switch panel to be installed at another location on header or door frame.

- Mode switch panel cable
length is 36 ".
Refer to Para. 2.8.

8.5 Double door header installation

8.5.1 Double door header installation preparation.

1. Door frame installed.
2. Confirm header width.

- Header width equals door frame width plus three inches.

3. Determine type and location of studs, or wall material, above door frame.
4. Mark stud locations on wall above door frame.
5. Select header mounting screws

Fig. 8.5.1 Header and door frame width
 (Para. 2.4).

Fig. 8.5.2 Double door header mounting holes, conduit holes

1 Bottom mounting hole
2 Top V-groove
3 Bottom V-groove
4 Header track
5 Bottom slide channel
6 Top mounting hole located on stud centerline

7 Low voltage wiring (location may change)
8115 Vac wiring (Location may change)

8.5.2 Drill holes in header.

1. Drill six $1 / 4^{\prime \prime}$ holes in header bottom slide channel, two on each side and two in middle of header.
2. Drill two holes in middle of header for 115 VAC and low voltage wiring.

1 TIPS AND RECOMMENDATIONS

If 115 Vac wiring is located on a door swing side, drill hole for wiring on that side.

8.5.3 Install mode and exit only switch panel.

1. Install mode and exit only switch panel in header (Para. 8.4) on active door side.

8.5.4 Mount header to door frame.

1. Using applicable installation template for reference, locate header on door frame.
2. Drill holes into door frame using header bottom slide channel 1/4" hole locations.
3. Fasten header to wall.

- Use shims as required to make header square to door frame.

CAUTION

Header must be plumb and level to door frame!
4. Drill $1 / 4$ " holes in header top V-groove on centerline of marked stud locations and secure header to wall using selected screw.

CAUTION

After drilling holes, clean all metal debris from header!

9 ED50/ED100/ED250 operator installation

9.1 Single door narrow header mounting plate installation

4 Header track
9 Operator axle hole
12 Program switch panel

Mounting plate

$21 / 4 \times 20$ UNC hole
3115 VAC terminal
block
11 1/4-20 $\times 1^{1 "}$ PHFS DK4617-010

3115 VAC terminal block
5 Guide pin
6 Third guide pin
7 1/4-20×1" FHMSP
9 Operator axle centerline

1 Inside edge of jamb bracket
2 Edge of mounting base

Fig. 9.1.1 Narrow header with header tracks

Fig. 9.1.2 Mounting plate

Fig. 9.1.3 Header with mounting plate installed

Fig. 9.1.4 Mounting plate location in header

Fig. 9.1.5
1/4-20 $\times 1$ " PHFS

Fig. 9.1.6
Guide pin

9.1.1 Position header tracks.

1. Slide header tracks (7) to side of header with operator axle hole.

9.1.2 Fasten mounting plate to header tracks.

1. Place mounting plate on header tracks, aligning holes in header track with $1 / 4 \times 20$ UNC mounting plate holes.
2. Thread eight $1 / 4-20 \times$ FSMSP into mounting plate hole locations (Fig. 9.1.3). Do not tighten screws.

9.1.3 Fix location of mounting plate in and secure to header.

1. Slide mounting plate to dimension shown between inside edge of jamb bracket and edge of mounting plate (Fig. 9.1.4).
2. Tighten all eight screws using No. 3 Phillips screwdriver. Recheck dimension in step 1.

9.1.4 Install third guide pin.

1. Install third guide pin (6).

9.2 Double door narrow header mounting plate installation

Fig. 9.2.1 Double door narrow header with header tracks

3 Axle centerline
12 Program switch
Header track
panel
Fig. 9.2.2 Double header with mounting plates installed

5 Guide pin
6 Third guide pin

8 Power connect cable DX3484-0x0

Fig. 9.2.3 Power connect cable

Fig. 9.2.4 Header and mounting plate wiring channels

1 Mounting plate channel
5115 Vac terminal block
10 Header center channel

9.2.1 Install mounting plates in double header.

1. Reference Para. 9.1.

9.2.2 Install Power connect cable.

1. Route Power connect cable through both mounting plate channels.

- Reference Para. 2.4 for Power connect cable lengths.

TIPS AND RECOMMENDATIONS

Cable will connect 115 Vac between the two operators (Ref. Para. 9.4).

9.2.3 Install third guide pin.

1. Install third guide pin in each mounting plate (Fig. 9.2.2).

TIPS AND RECOMMENDATIONS
Use header center channel for low voltage wiring.

9.3 Customer 115 Vac connection to mounting plate terminal block

Fig. 9.3.1 Mounting plate power connection side

1115 Vac terminal block

2 Ground terminal
3 Terminal block screw torque label
4 Preferred 115 Vac wiring entry point

Fig. 9.3.2 115 Vac connections
$1 \quad 115$ Vac terminal block

2 Ground terminal
3 Mains terminal torque and wire label

5 M3.5 screw
6115 Vac plug to operator
L $\quad 115 \mathrm{Vac}$
N Neutral
G Ground

Fig. 9.3.3 Mains terminal torque and wire label

TIGHTEN MAINS TERMINAL TO 5-7 in-lb Use Copper Conductors ONLY

TIPS AND RECOMMENDATIONS
Install label in header with panelboard and circuit breaker number supplying 115 Vac to header.

9.3.1 Connect 115 VAC wiring.

A WARNING

Routing and connection of 115 Vac wiring to ED100/ED250 must be performed by a qualified person!

A. WARNING

115 Vac branch circuit disconnect or circuit breaker must be OFF!

1. Route wiring into header, use appropriate fitting to secure conduit or wiring to header, and route wiring to 115 Vac terminal block.

CAUTION

Use copper conductors only!
2. Terminate 115 Vac wiring at terminal block.

TIPS AND RECOMMENDATIONS

- Maximum wire strip length, $1 / 4$ ".
- Tighten terminal screws to torque referenced in Fig. 9.3.3.
- Leave service loop in wiring at terminal block for maintenance.

3. Terminate ground wire at ground terminal. Remove nut and washer on ground terminal, bend ground wire around terminal, replace washer and nut and tighten. Leave service loop in ground wire.

- Use 5/16" [8 mm] socket for nut.

9.4 Double door header 115 Vac mounting plate connection

Fig. 9.4.1 Double door header 115 Vac connection
$1 \quad 115 \mathrm{Vac}$ terminal block
2 Ground stud

NOTICE

Power connect cable connects the two operators together (Para. 9.2.2).

9.4.1 115 Vac connection to double door header.

1. Customer 115 Vac can connect to either mounting plate 115 Vac terminal block and ground stud.

9.5 Remove protective film strips from ED operator

9.5.1 Remove protective film strips.

1. Remove two protective film strips from operator heat conductive pads.

CAUTION

Heat conductive pads must remain clean once protective film strips are removed!

Fig. 9.5.1 ED50 operator heat conductive pads
1 Heat conductive pad

Fig. 9.5.2 ED100/ED250 operator heat conductive pads
1 Heat conductive pad

Fig. 9.5.3 Protective film strip
2 Protective film strip

9.6 Install ED100/ED250 operator on mounting plate in header

Fig. 9.6.1 Header with mounting plate installed

3 Guide pin
4115 Vac plug and cable to mounting plate 115 Vac terminal block

5 M6 SHCS mounting hole

9.6.1 Install operator on mounting plate.

CAUTION

Insure protective film strips have been removed from heat conductive pads (Para. 9.5).

1. Place operator over the three mounting plate guide pins.
2. Move operator in toward mounting plate, guiding all wiring into operator housing.
3. Once operator is placed flush against mounting plate, use a 5 mm T handle hex key to thread eight M6 SHCS into mounting plate.
4. Tighten all eight SHCS.
5. Insert 115 Vac mounting plate plug into operator 115 Vac socket.

Fig. 9.6.2 Installing operator on mounting plate
$1 \mathrm{M} 6 \times 10 \mathrm{SHCS}$
1.1 M6×20 SHCS

3 Guide pin
4115 Vac plug and cable to mounting plate 115 Vac terminal block
6115 Vac terminal block

Fig. 9.6.3 115 Vac plug connection

Fig. 9.6.4 Operator and mounting plate assembly

Fig. 9.6.5 Header with operator installed

9.7 Double door header ED100/ED250 operator installation

Fig. 9.7.1 Double door header with operators installed

Fig. 9.7.2 115 Vac power cable installed on operator with 115 Vac customer connection
1 Power switch
2 Power cable 115 Vac plug
3115 Vac cable to terminal block

4 Power cable ground wire and ring terminal
5 Customer 115 Vac power
6 Power switch board
7 Ground stud nut

Fig. 9.7.3 115 Vac power cable installed on second operator

Fig. 9.7.4 Power connect cable

9.7.1 Install operators on mounting plates.

1. Refer to Para. 9.6 for installation of ED100/ED250 operators.

9.7.2 Connect 115 Vac power connect cable to both operators.

Refer to Para. 9.2 for installation of power cable in mounting plates.

1. Insert power connect cable 115 Vac plug into socket on power switch board.

- Remove ground stud nut ($5 / 16^{\prime \prime}$ [8 mm] socket) and washer.

2. Insert power connect cable ground wire ring terminal on ground stud.
3. Replace washer, install ground stud nut and tighten.

1 TIPS AND RECOMMENDATIONS

Customer 115 Vac power connection may be on opposite operator.

8 Power connect cable DX3484-0x0

9 Ground wire ring terminal

9.8 Install ED50 operator on mounting plate in header

Fig. 9.8.1 Header with mounting plate installed

3 Guide pin
4 Mounting plate 115 VAC plug
5 M6 SHCS mounting hole
7 Program switch
$1 \mathrm{M} 6 \times 20 \mathrm{SHCS}$
1.1 M6x 10 SHCS

2 Operator housing
3 Guide pin
4 Mounting plate 115 Vac plug
$6 \quad 115$ Vac terminal block

4 Mounting plate 115 Vac plug
7 Operator 115 Vac socket

8 Power switch

Fig. 9.8.2 Installing operator on mounting plate

Fig. 9.8.3 115 Vac plug connection

NOTICE

Customer 115 Vac wiring (Para. 14.3) not shown for clarity.

9.8.1 Install operator on mounting plate.

CAUTION

Insure protective film strips have been removed from heat conductive pads (Para. 9.5)

1. Place operator over the three mounting plate guide pins.
2. Move operator in toward mounting plate, guiding all wiring into operator housing.
3. Insert 115 Vac mounting plate plug into operator 115 Vac socket.
4. Once operator is placed flush against mounting plate, use a 5 mm T handle hex key to thread eight M6 SHCS into mounting plate.
5. Tighten all eight SHCS.

Fig. 9.8.4 Operator and mounting plate assembly

Fig. 9.8.5 Header with operator installed

9.9 Double header ED50 operator installation

Fig. 9.9.1 Double header with operators installed

Fig. 9.9.2 115 Vac power cable installed on operator with 115 Vac customer connection

1 Power switch
2 Power cable 115 Vac plug
3115 Vac cable to terminal block

4 Power cable ground wire and ring terminal
5 Customer 115 Vac power
6 Power switch board
7 Ground stud nut

2 Power cable 115 Vac plug

4 Power cable ground wire and ring
terminal

Fig. 9.9.3 115 VAC power cable installed on second operator

Fig. 9.9.4 115 Vac power cable

9.9.1 Install operators on mounting plates.

1. Refer to Para. 9.8 for installation of ED50 operators.

9.9.2 Connect 115 Vac power cable to both operators.

1. Insert power cable (Fig. 9.7.4) 115 Vac plug into socket on power switch board.

- Remove ground stud nut (5/16" [8 mm] socket) and washer.

2. Insert power cable ground wire ring terminal on ground stud.
3. Replace washer, install ground stud nut and tighten.

TIPS AND RECOMMENDATIONS
Customer 115 Vac power connection may be on opposite operator.

8115 Vac power cable DX3484-0x0

9 Ground wire ring terminal

9.10 Connect cables to ED50/ED100/ED250 operator

Fig. 9.10.1 Narrow header with ED100/ED250 operator
1 Program switch panel
3 Header for program switch cable
5 COM 1 service
connector

1 Mode switch panel
2 Mode switch cable with connector 36" long
3 Header for mode switch cable

4 RJ 45 connector, Sync cable

5 COM 1 service connector
6 RJ 45 connector for Mode switch panel cable

Fig. 9.10.2 Cable installation on operator

Fig. 9.10.4 RJ45 comm cable

Fig. 9.10.3 Mode switch panel RJ45

9.10.1 Connect mode switch cable to operator.

1. Carefully insert cable connector into header connector on operator.

CAUTION

Connector inserts vertically into header connector.

9.10.2 Install RJ45 mode switch comm cable.

1. Connect one end of cable to program switch panel RJ45 connector.
2. Connect other end of cable to COM 1 service connector on operator.

9.11 Double door header operator legend plate

Fig. 9.11.1 Double door header with operators installed
1 Program switch panel

3 Header for program switch cable

5 COM 1 connector

7 User interface legend plate

Fig. 9.11.2 Operator legend plate

9.11.1 Reverse legend plate orientation.

1. Remove and reverse orientation of legend plate on RH operator so that letters face upward.
2. Reinstall legend plate

10 Pull arm installation

10.1 Pull arm installation

notice

Reference Chapter 7, Installation Templates.

10.2 Pull arm assemblies

Fig. 10.2.1 Deep pull arm, LH
1 Drive arm
2 CPD
3 Track

Fig. 10.2.3 Pull arm

Fig. 10.2.2 Deep pull arm, RH
1 Drive arm
2 CPD
3 Track

10.3 Deep pull arm hardware

Fig. 10.3.1 Deep pull arm assembly

1	Track
$\mathbf{2}$	End cap
$\mathbf{3}$	Fixing piece
$\mathbf{3 . 1}$	M5 $\times 15$ Phillips
	FHS
$\mathbf{4}$	Pull arm
$\mathbf{5}$	20 mm axle
	extension
$\mathbf{5 . 1}$	Splined
$\mathbf{6}$	CPD lever
$\mathbf{6 . 1}$	M6 $\times 10$ SHCS
$\mathbf{7}$	Slotted spring pin
$\mathbf{8}$	Pull arm cap
$\mathbf{9}$	Slide shoe
$\mathbf{1 0}$	Pivot pin
$\mathbf{1 1}$	Retaining ring
$\mathbf{1 2}$	Bumper
$\mathbf{1 3}$	M8 $\times 1.25 \times 40$
	SHCS
$\mathbf{1 4}$	Wood screws
$\mathbf{1 5}$	Machine screws
$\mathbf{1 6}$	Bumper stop
$\mathbf{1 7}$	M5 $\mathbf{x} \mathbf{1 3 ~ F H M S ~}$
	cross recessed

10.4 Slide shoe assembly

9 Slide shoe
10 Pivot pin
11 Retaining ring
Fig. 10.4.1 Slide shoe and pivot pin

10.5 Install hardware into track

Fig. 15.5.1 RH track assembly

1 Track
3 Fixing piece
$\begin{array}{ll}9 & \text { Slide shoe } \\ \mathbf{1 2} & \text { Bumper }\end{array}$

16 Bumper stop
$17 \mathrm{M} 5 \times 13 \mathrm{FHMS}$ cross recessed

Fig. 10.5.2 LH track assembly

$\mathbf{1}$	Track	$\mathbf{9}$	Slide shoe	$\mathbf{1 6}$	Bumper stop
$\mathbf{3}$	Fixing piece	$\mathbf{1 2}$	Bumper	$\mathbf{1 7}$	M5 $\times 13$ FHMS
				cross recessed	

9 Slide shoe cross recessed

10.4.1 Install pivot pin into slide shoe.

1. Insert pivot pin into slide shoe.
2. Install spring clip into pivot pin slot.

10.5.1 Track assembly.

CAUTION

Assemble track hardware based on RH or LH installation.

1. Remove both end caps (2) and one fixing piece (3) from track.
2. Slide bumper stop (16), bumper (12) and slide shoe assembly (9) into track.

- Do not tighten bumper stop M5 screw (17).

2. Secure fixing piece to end of track with M5 $\times 15$ screw (3.1).

- Use No. 2 Phillips, do not over-tighten.

10.6 Standard arm

Fig. 10.6.1 Pull arm assembly
1 Arm

10.7 Deep pull arm

6.1 M6×10 SHCS

11 Slotted spring pin

Fig. 10.7.3 CPD lever and slotted spring pins

10.7.1 Deep pull arm assembly.

CAUTION

Assemble arm and CPD lever based on RH or LH pull or push.

1. Press CPD lever slotted spring pins into corresponding holes in arm.
2. Secure CPD lever to arm with M6×10 SHCS.

Fig. 10.7.4 Deep pull arm assembly, RH pull, LH push
6 CPD lever
6.1 M6 × 10 SHCS

7 Slotted spring pin
16 Arm

6 CPD lever
6.1 M6 x 10 SHCS

7 Slotted spring pin
16 Arm

10.8 Deep pull arm installation

NOTICE

Reference Chapter 7 - Installation templates.

Fig. 10.8.1 Deep pull arm parallel to door

Fig. 10.8.2 Deep pull arm installed on ED100/ED250 spindle

Fig. 10.8.3 Torque wrench, 5 mm hex key

10.8.1 Mount deep pull arm to operator.

TIPS AND RECOMMENDATIONS
ED100/ED250 operator shown in illustrations.

a WARNING

Use caution when working in proximity of door and pull arm!.

CAUTION

ED50/ED100/ED250 operator

 axle closed position.In order to mount the drive arm in the correct position, the spindle must be at the closed position.

1. Set ED50/ED100/ED250 operator spring tension based on door width. Reference Chapter 12.
2. Position drive arm with axle extension parallel to door.
3. Rotate the drive arm with axle extension so that the edge of the CPD lever is adjacent to door surface (Fig. 10.8.2)
4. Install drive arm with axle extension onto spindle, aligning axle extension to nearest spindle tooth.

- Depending on door reveal, this arm position may be more than one spindle tooth from the arm parallel to door position (step 2).

5. Thread the $M 8 \times$ \qquad mm SHCS (length determined by axle extension) into spindle and tighten SHCS.

CAUTION

Use torque wrench with hex key socket to tighten M8 screw to $26 \mathrm{ft}-\mathrm{lb}$ [35.3 Nm].

Fig. 10.8.4 Track mounting holes in door,deep pull arm with 1/2" pivot pin

Fig. 10.8.5 Slide shoe installation on deep pull arm

Fig. 10.8.6 Track installed over shoe

1 Track mounting hole 2 Fixing piece
Fig. 10.8.7 Track installed

3 Track fastener

10.8.2 Locate and drill track mounting holes.

1. Using applicable template, locate and drill mounting holes for track.

- Reference Para. 2.13 for pull arm track fasteners.

10.8.3 Install slide shoe assembly onto deep pull arm.

1. Thread pivot pin M8 SHCS into CPD lever mounting hole.

- Use 6 mm hex key to tighten.

10.8.4 Track assembly.

1. Insure track components and deep pull arm are assembled based on hand of door (Para. 10.4).
10.8.5 Install track assembly onto slide shoe.
2. Remove fixing piece from track on opposite end from bumper.
3. Slide track assembly onto shoe (Fig. 10.8.6), lining up fixing piece with mounting hole in door.
4. Install second fixing piece onto track and secure with mounting screw. Do not overtighten.

10.8.6 Secure track assembly to door.

1. Attach track fixing pieces to door using selected fasteners.

- Insure track is level as fasteners are tightened.

10.8.7 Install end caps and spindle cap.

1. Install two track end caps and the spindle cap.

Fig. 10.8.8 Track end caps, spindle cap

10.9 Standard pull arm installation

NOTICE

Reference Chapter 7 - Installation templates.

Fig. 10.9.1 Drive arm parallel to door

Fig. 10.9.2 Drive arm installed on ED100/ED250 spindle

1 M8 SHCS

10.9.1 Mount drive arm to ED50/ED100/ ED250 operator.

a WARNING

Use caution when working in proximity of door and pull arm!.

CAUTION

ED100/ED250 operator axle closed position.
In order to mount the drive arm in the correct position, the spindle must be at the closed position.

1. Set ED50/ED100/ED250 operator spring tension based on door width. Reference Chapter 12.
2. Position drive arm with axle extension parallel to door (Fig. 10.9.1).
3. Rotate the drive arm with axle extension one spindle tooth in door closed direction.

- Depending on door reveal, this arm position may be more than one spindle tooth from the arm parallel to door position (step 2).

4. Install drive arm with axle extension onto spindle..
5. Thread the M8x \qquad mm SHCS (length determined by axle extension) into spindle and tighten SHCS.

CAUTION

Use torque wrench with hex key socket to tighten M8 screw to $26 \mathrm{ft}-\mathrm{lb}$ [35.3 Nm].

Fig. 10.9.3 Torque wrench, 5 mm hex key

Fig. 10.9.4 Track mounting holes in door, standard arm 1/2" pivot pin

1 Track mounting holes
Fig. 10.9.5 Slide shoe installation on drive arm

1 Pivot pin M8 SHCS 2 Drive arm M8 mounting hole

Fig. 10.9.6 Track installed over shoe

Fig. 10.9.7 Track installed on door

Fig. 10.9.8 Track end caps, spindle cap

10.9.2 Locate and drill track mounting holes.

1. Using applicable template, locate and drill mounting holes for track.

- Reference Para. 2.13 for track fasteners.

10.9.3 Install slide shoe assembly onto standard drive arm

1. Thread pivot pin M8 SHCS into standard arm mounting hole.

- Use 6 mm hex key to tighten.

10.9.4 Track assembly.

1. Insure track components and deep pull arm are assembled based on hand of door (Para. 10.4).

10.9.5 Install track assembly onto slide shoe.

1. Remove fixing piece from track on opposite end from bumper.
2. Slide track assembly onto shoe (Fig. 10.9.6), lining up fixing piece with mounting hole in door.
3. Install second fixing piece onto track and secure with mounting screw. Do not overtighten.

10.9.6 Secure track assembly to door.

1. Attach track fixing pieces to door using selected fasteners (Fig. 10.9.7).

- Insure track is level as fasteners are tightened.

10.9.7 Install end caps and spindle cap.

1. Install two track end caps and spindle cap.

11 Push arm installation

11.1 Push arm installation templates

notice

Reference Chapter 7 - Installation templates.

1 Standard push arm
2 Deep push arm

Fig. 11.1.1 Push arm assemblies

11.2 Push arm installation

Fig. 11.2.1 Push arm assembly, 8 75" [225] DC4677-01X
1 Splined drive arm
2 Socket
4 Adjustment arm 111/4"[285]
5 Adjustment arm tube 12 1/4" [311]
6 Shoe
$7 \mathrm{M} 6 \times 10 \mathrm{~mm}$ flanged button head screw
8 Ball head
11 Shoe screw cover
$12 \mathrm{M} 8 \times \ldots \mathrm{SHCS}$
13 Cap

1 Splined drive arm
2 Socket
6 Shoe
7 M6×10 mm flanged button head screw
8 Ball head
9 Adjustment arm, 173/4" [450]

Fig. 11.2.2 Deep push arm assembly, 19 11/16" [500] DC4677-02X

Fig. 11.2.3 Drive arm

$\mathbf{1}$	Drive arm
$\mathbf{2}$	Socket
$\mathbf{3}$	Arm axle sleeve

Fig. 11.2.4 Drive arm extension installation

$\mathbf{1}$	Drive arm	$\mathbf{1 3}$	Axle extension
$\mathbf{1 2}$	Axle extension sleeve	$\mathbf{1 4}$	$\mathrm{M} 8 \times \ldots$ SHCS

Fig. 11.2.5 Push arm positioned for installation

1 Drive arm
12 Axle extension sleeve
11 Spindle
14 M8x_SHCS

Fig. 11.2.6 Arm assemblies attached to door and ED100/ED250

11.2.1 Attach drive arm to operator.

CAUTION

Door must be fully closed!

a WARNING

Use caution when working in proximity of door and push arm!.

CAUTION

ED operator axle closed position.
In order to mount the drive arm in the correct position, the axle must at the closed position.

1. Set ED50/ED100/ED250 operator spring tension based on width of door.

TIPS AND RECOMMENDATIONS

Reference Para. Chapter 12, Set operator spring tension.
2. Insert axle extension into drive arm.
3. Move arm to ED50/ED100/ED250, inserting arm into axle extension sleeve at a 90° angle to operator (Fig. 11.2.5).
4. Thread SHCS into ED50/ED100/ED250 spindle and tighten.

CAUTION

Use torque wrench with hex key socket to tighten SHCS to $26 \mathrm{ft}-\mathrm{lb}$ [35.3 Nm]

11.2.2 Drill two holes in door for adjustment arm shoe.

Installation templates (Chapter 7) document location of shoe on door.

1. Drill two holes in door for adjustment arm shoe.

- Fastener type based on door material.

1
 TIPS AND RECOMMENDATIONS

Reference Chapter 2 for arm fasteners.

11.2.3 Secure adjustment arm assembly to door.

1. Fasten adjustment arm assembly to door (Fig. 11.2.6).

Fig.11.2.7 Shoe fastener covers
11 Shoe screw cover

Fig.11.2.8 Arm assemblies attached to door, ED100/ED250

Fig. 11.2.9 Drive arm, adjustment arm connection

Fig. 11.2.10 Adjustment arm at 90° angle to door

11.2.4 Install shoe fastener covers.

1. Install two shoe fastener covers

11.2.5 Connect adjustment arm to drive arm.

1. Loosen the two adjustment $\mathrm{M} 6 \times 10 \mathrm{~mm}$ flanged button head screws.

Fig. 11.2.11 Adjustment arm M6 $\times 10$ screws

7 M6 x 10 mm flanged button head screw
2. Using square, position adjustment arm assembly at 90° angle to door (Fig. 11.2.10).
3. Rotate drive arm and adjust length of adjustment arm until drive arm ball head (8) is aligned with adjustment arm socket (2).

CAUTION

Maintain adjustment arm assembly at a 90° angle to door (Fig. 11.2.10).
4. Insert adjustment arm ball head (8) into drive arm socket (2).

- Spring in socket will retain ball head in socket.

5. Secure adjustment arm position by tightening the two M6 $\times 10 \mathrm{~mm}$ flanged button head screws.

CAUTION

Recheck that adjustment arm is at 90° angle to door

12 ED50/ED100/ED250 Operator spring tension

12.1 Set ED50/ED100/ED250 operator spring tension

Fig. 12.1.1 Spring tension adjustment

1 Thandle hex key
for spring tension
adjustment
Fig. 12.1.2 5 mm T-handle hexkey

Fig. 12.1.3 Door pressure gauge

1 TIPS AND RECOMMENDATIONS

System checks spring tension during learning cycle (Reference ED50/ED100/ED250 Setup and Troubleshooting Manual). Learning cycle will be canceled if spring is insufficiently tensioned. Door will stop and display will show a rotating "O" and an "F".
of

12.1.1 Spring tension setting revolutions.

Door width					
Inches	28	32	36	42	48
mm	711	813	914	1067	1219
Spring setting revolutions	10	10	14	16	18
ED50	10	10	14	16	18
ED100	10	10	14	16	18
ED250					

12.1.2 Operator spring tension function.

1. Spring tension sets closing force on door.
2. Required spring tension is based on door width.

12.1.3 Spring tension adjustment.

1. Spring tension adjustment is factory set fully CCW, no spring tension.
2. Spring must be pretensioned per Para. 12.1.1.

- Use 5 mm T-handle hex key.

Clockwise - increases spring tension.
Counterclockwise - decreases spring tension.

CAUTION

A minimum of ten spring tension revolutions are required to operate system.

12.1.4 Check door closing force.

1. Para. 11.1.1 lists approximate spring tension settings.
2. Use pressure gauge to check door closing force at 2° and adjust tension setting if necessary.

TIPS AND RECOMMENDATIONS

Reference Chapter 13, ANSI/BHMA standards for door closing forces.

13 ANSI/BHMA standards

13.1 A156.10 Power operated pedestrian doors

The following table references portions of content from ANSI/BHMA A156.10. Refer to the standard, available through ANSI or BHMA for additional information. Standard material reprinted with BHMA permission.

Reference Appendix A for additional parameter detail.

13.1.1 Door measurements, power operated swing door.

ED100/ED250 Parameter			A156.10 standard			
Parameter		Function	Factory setting	Adjustment range	Para.	Requirement
So	Opening speed automatic mode	Swing door opening speed, automatic mode.	25\%	$\begin{aligned} & \text { ED100 8\% } \mathrm{s}-50 \% \mathrm{~s} \\ & \text { ED250 8\% } \mathrm{s}-60 \% \mathrm{~s} \end{aligned}$	10.2.1	Swing door opening time to 80°, not less than 1.5 s .
Sc	Closing speed automatic mode	Swing door closing speed, automatic mode.	25\%	$\begin{aligned} & \text { ED100 8\% } \mathrm{s}-50 \% \mathrm{~s} \\ & \text { ED250 8\% } \mathrm{s}-60 \% \mathrm{~s} \end{aligned}$	10.2.5	Swing door closing time to latch check. Reference 28.1.2.
Fo	Static force in opening direction	Static force on door closing edge in opening direction.	$\begin{aligned} & 13.5 \mathrm{lbf} \\ & {[60 \mathrm{~N}]} \end{aligned}$	```4.5 lbf- 33.7 lbf Reduced in low energy mode.```	10.2.2	Not to exceed 30 lbf measured 1" from lock edge of door.
Fc	Static force in closing direction	Static force on door closing edge in closing direction.	$\begin{aligned} & 13.5 \mathrm{lbf} \\ & {[60 \mathrm{~N}]} \end{aligned}$	$4.5 \mathrm{lbf}-33.7 \mathrm{lbf}$ Reduced in low energy mode	10.2.7	Not to exceed 30 lbf measured 1" from lock edge of door at any point in closing cycle.
bc	Back check	Checking or slowing down of door speed before door being fully opened.	10°	$5^{\circ}-40^{\circ}$	10.2.3	Shall occur at no less than 10° of full open position.
dd	Hold open time	Open time for swing doors using sensors or control mats upon loss of detection.	5s	$0 s-30 s$ $0 s-180 s$ (F2 parameter set to full energy)	10.2.4	Minimum of 1.5 seconds after loss of detection.
	Latch check	Checking or slowing down of door speed before door being fully closed.		Not adjustable	10.2.6	Not less than 10° from closed position. The door will not close through the final 10° in less than 1.5 s .
hS	Reference	Support for manual mode in door closed position.				
hA	service manual for parameter	Adjustment, door activation angle.			10.2.8	Not greater than 30 lb fapplied 1" from edge of lock stile to open.
hF		Power assist function.				

13.1.2 A156.10, 10.2.5 swing door closing time to latch check

"D" door width, minimum (inches)	"W" door weight, maximum (pounds)	"T" closing time, minimum, to latch check (seconds)
36 or less	100	2.0
36	140	2.3
42	110	2.3
42	120	2.7
48	160	2.8
48		3.2

13.1.3 Other door weights and widths

Closing time $T=(D \sqrt{W}) / 188$
$\mathrm{D}=$ Width of door in inches.
W = Weight of door in pounds.
$\mathrm{T}=$ Closing time to latch check in seconds.

13.2 A156.19 Low energy power operated doors

The following table references portions of content from ANSI/BHMA A156.19. Refer to the standard, available through ANSI or BHMA for additional information. Standard material reprinted with BHMA permission.

13.2.1 Door measurements, low energy power operated door.

ED100/ED250 Parameter			A156.19 standard			
Parameter	Function	Factory setting	Adjustment range	Para.		Requirement
:---						

Note 1: Speed may be slower after learning cycle completed.

13.2.2 A156.19, Table I: Minimum opening and closing times.

"D" door width, inches [mm]	"W" doorweight, pounds [kg]								
	$100[45.4]$	$125[56.7]$	$150[68]$	$175[79.4]$	$200[90.7]$				
$30[762]$	3.0	3.0	3.0	3.0	3.5				
$36[914]$	3.0 s	3.5 s	3.5 s	3.0 s	3.0 s				

Minimum opening time to back check or 80 degrees (whichever occurs first).
Minimum closing time from 90 degrees to latch check or 10 degrees (whichever occurs first).
13.2.3 A156.19, Table II: Total opening time to $\mathbf{9 0}$ degrees.

Back check at 60°	Back check at 70°	Back check at 80°
Table I plus 2 s	Table I plus 1.5 s	Table I plus 1 s
If door opens more than 90°, it shall continue at the same rate as backcheck speed.		
Back check occurring at a point between positions shall use lowest setting.		

13.2.4 Other door weights and widths.

Closing time $T=(D \sqrt{W}) / 188$
$D=$ Width of door in inches.
W = Weight of door in pounds.
$\mathrm{T}=$ Closing time to latch check in seconds.
SI (metric) units
Closing time $T=(D \sqrt{W}) / 2260$
$\mathrm{D}=$ Width of door in mm .
$W=$ Weight of door in kg .
$\mathrm{T}=$ Closing time to latch check in seconds.

14 Install door signage

14.1 Install door signage

14.1.1 Install door signage.

Install applicable door signage as outlined in Chapter 6, ED50/ED100/ED250 door signage.

15 Cover, end caps and spindle caps

15.1 Cover end cap and spindle installation

15.1.1 Cover and end cap installation.

Cover and end caps will be installed after ED50/ED100/
ED250 operator setup is completed.

- Reference ED50/ED100/ED250 Setup and Troubleshooting Manual DL4617-002.

16 Maintenance

16.1 Safety label, automatic swing doors

16.1.1 Automatic swinging door safety information label, ANSI/BHMA A156.10.

This AAADM label outlines safety checks that should be performed daily on automatic swinging door controlled by an ED100 or ED250 operator configured for full energy mode.

16.1.2 Safety information label location.

Place label in a protected, visible location on door frame, near program switch panel if possible.

16.1.3 Annual compliance section of label.

This section of label is only completed on automatic swing doors that comply with ANSI/BHMA A156.10 standard and pass inspection by an AAADM certified dormakaba USA, Inc. technician.
16.1.4 Additional annual compliance inspection labels Place additional labels over annual compliance inspection section of safety information label.

16.2 Safety label, low energy swing doors

16.2.1 Low energy swinging door safety information

 label, ANSI/BHMA A156.19.This AAADM label outlines safety checks that should be performed daily on a swinging door controlled by an ED50 operator or an ED100/ED250 operator configured for the low energy mode.

16.2.2 Safety information label location.

Place label in a protected, visible location on door frame, near program switch panel if possible.

16.2.3 Annual compliance section of label.

This section of label is only completed on low energy swing doors that comply with ANSI/BHMA A156.19 standard and pass inspection by an AAADM certified dormakaba USA, Inc. technician.
16.2.4 Additional annual compliance inspection labels. Place additional labels over annual compliance inspection section of safety information label.

Fig. 16.1.2 Annual compliance inspection labels

ANNUAL COMPLIANCE
INSPECTION
INSPECT FOR AND
COPLIES WITH ANSII
A156.10 ON:
DATE:
by AAADM Certified
Inspector
Number:

Fig. 161.1 Safety information labels

SAFETY INFORMATION Automatic Swinging Doors

These minimum safety checks, in addition to those in the Owner's Manual, should be made each day and after any loss of electrical power.

1. Walk toward the door at a normal pace. The door should open when you are about 4 feet from the door.
2. Stand motionless on threshold for at least 10 seconds. The door should not close.
3. Move clear of the area. The door should remain open for at least 1.5 seconds and should close slowly and smoothly.
4. Repeat steps 1 through 3 from other direction if door is used for two way traffic.
5. Inspect the floor area. It should be clean with no loose parts that might cause user to trip or fall. Keep traffic path clear.
6. Inspect door's overall condition. The appropriate signage should be present.
7. Have door inspected by an AAADM certified inspector at least annually.

DO NOT USE DOOR if it fails any of these safety checks of if it malfunctions in any way. Call a qualified automatic door service company to have door repaired or serviced.

See Owner's manual or instructions for details on each of these and other safety items. If you need a copy of the manual, contact the manufacturer.

AAADM-2496
AAADM
American Association of Automatic Door Manufacturers

ANNUAL COMPLIANCE INSPECTION

INSPECT FOR AND COMPLIES WITH ANSI A156.10 ON:
DATE:
by AAADM Certified Inspector
Number:

SAFETY INFORMATION Low Energy Swinging Doors

These minimum safety checks, in addition to those in the Owner's Manual, should be made each day and after any loss of electrical power.

1. Activate the door. Door should open at a slow smooth pace (4 or more seconds), and stop without impact.
2. Door must remain fully open for a minimum of 5 seconds before beginning to close.
3. Door should close at a slow, smooth pace (4 or more seconds), and stop without impact.
4. Inspect the floor area. It should be clean with no loose parts that might cause user to trip or fall. Keep traffic path clear.
5. Inspect door's overall condition. The appropriate signage should be present and the hardware should be in good condition.
6. Have door inspected by an AAADM certified inspector at least annually.

DO NOT USE DOOR if it fails any of these safety checks of if it malfunctions in any way. Call a qualified automatic door service company to have door repaired or serviced.

See Owner's manual or instructions for details on each of these and other safety items. If you need a copy of the manual, contact the manufacturer.

AAADM-3044 Door Manufacturers

ANNUAL COMPLIANCE INSPECTION

INSPECT FOR AND COMPLIES WITH ANSI A156.19 ON:
DATE:
by AAADM Certified Inspector
Number:

16.3 Arm fasteners - torque requirements

Fig. 16.3.1 Arm M8 SHCS cap
8 Cap

Fig. 16.3.2 M8 SHCS

Fig. 16.3.3 Pivot pin M8 socket head
3 Pivot pin M8 socket head

16.3.1 Check drive arm M8 SHCS torque.

1. Set program switch to CLOSE.
2. Remove cap over M8 SHCS.
3. Check torque.
4. Replace cap.

CAUTION

Using torque wrench with 6 mm hex key socket, check M8 SHCS torque: $26 \mathrm{ft}-\mathrm{lb}$ [35.3 Nm].

16.3.2 Check pivot pin M8 socket head torque.

1. Check torque.

CAUTION

Use torque wrench with hex key socket. M8 screw torque:
5.9 - $7.4 \mathrm{ft}-\mathrm{lb}$ [8-10 Nm].

16.4 ED50 brake maintenance

Fig. 16.4.1 ED50 operator

1 Brake assembly
Fig. 16.4.2 Brake to brake disc air gap

1 Brake assembly
2 Brake disc assembly

1 Brake assembly
2 Brake disc assembly
$3 \mathrm{M} 3 \times 3$ set screw
4 Brake motor flange
$6 \mathrm{M} 3 \times 5 \mathrm{SHCS}$

Fig. 16.4.3 Brake assembly

Fig. 16.4.4 Feeler gauge set

16.4.1 Adjustment of air gap: brake to brake disc (Fig. 16.3.2).

TIPS AND RECOMMENDATIONS

Reference drawing:
254197-01-50

A WARNING

Set Mode switch to CLOSE before performing maintenance!

CAUTION

Air gap setting between brake and brake disc:
0.1 mm to 0.3 mm
(0.004" to 0.012")

1. Using 2.5 mm hex key, loosen three $\mathrm{M} 3 \times 3$ set screws securing brake disc to motor shaft.
2. Insert feeler gauge [air gap setting for sizing] between brake disc and brake.
3. Move brake disc against shim(s).
4. Screw M3 $\times 3$ set screws against motor shaft but do not tighten.
5. Remove feeler gauge.
6. Tighten M3 $\times 3$ set screws.

CAUTION

M3 $\times 3$ SHCS torque setting:
5.3 in- lb +0.9 in-lb [0.6 Nm +0.1 Nm].

TIPS AND RECOMMENDATIONS

Paper stock thickness:
approximately 0.003"

Fig. 16.4.5 M3×5 SHCS
1 Brake assembly
2 Brake disc assembly
$6 \quad \mathrm{M} 3 \times 5 \mathrm{SHCS}$

Brake assembly
2 Brake disc assembly

5 Motor shaft

Brake assembly
2 Brake disc assembly
$6 \mathrm{M} 3 \times 5$ SHCS from brake

Fig. 16.4.6 Brake disc assembly removed

Fig. 16.4.7 Brake and brake disc assemblies

16.4.2 Torque setting of M3 $\mathbf{x} \mathbf{5}$ SHCS.

- $5.3 \mathrm{in}-\mathrm{lb}+0.9 \mathrm{in}-\mathrm{lb}[0.6 \mathrm{Nm}+0.1 \mathrm{Nm}]$

Fig. 16.4.8 Brake coil wiring

Appendix A - Key switch wiring diagrams

A1.1 DX4604-21C Key Switch Panel with RJ45 connector

Fig. A1.1.1 Key switch panel DX4604-21C

Fig. A1.1.2 Key switch panel wiring diagram

A2.1 DX4604-11C Key Switch Panel

Fig. A2.1.1 Key switch panel
DX4604-11C

Fig. A2.1.2 Key switch panel wiring diagram

Appendix B-Knowing act switch wiring diagrams

B1.1 Knowing act switches

Fig. B1.1.1 ACTIVATE SWITCH TO OPERATE decal

1 Activate Switch to
Operate DD0758-010

B1.2 Knowing act switch wiring diagram

Fig. B1.2.1 ED operator terminal board activation inputs

Fig. B1.2.2 Knowing act device wiring

24 V is available for illuminated knowing act devices.

NOTICE

Knowing act devices; i.e. card readers.

Refer to device wiring diagram.
dormakaba USA, Inc. 1 Dorma Drive, Drawer AC Reamstown, PA 17567 USA
T: 717-336-3881
F: 717-336-2106

